Data Acquisition Toolbox™ Reference

R2014a

MATLAB[®] SIMULINK[®]

How to Contact MathWorks

(a)

www.mathworks.comWebcomp.soft-sys.matlabNewsgroupwww.mathworks.com/contact_TS.htmlTechnical Support

suggest@mathworks.com bugs@mathworks.com doc@mathworks.com service@mathworks.com info@mathworks.com Product enhancement suggestions Bug reports Documentation error reports Order status, license renewals, passcodes Sales, pricing, and general information

508-647-7001 (Fax)

508-647-7000 (Phone)

The MathWorks, Inc. 3 Apple Hill Drive Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

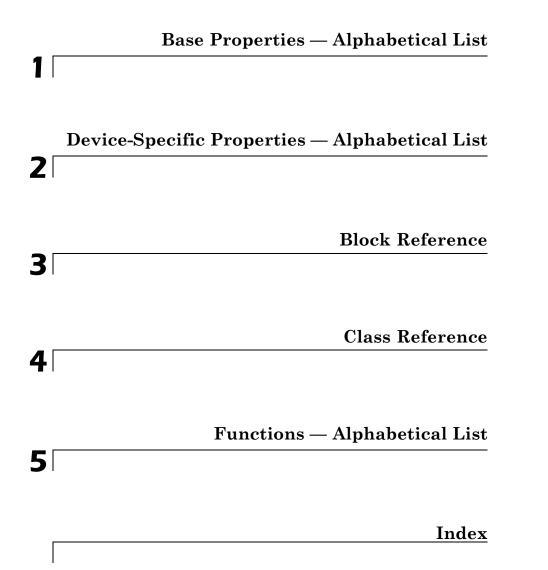
Data Acquisition Toolbox[™] Reference

© COPYRIGHT 2005–2014 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks


MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History	,	
September 2010	Online only	Revised for Version 2.17 (Release 2010b)
April 2011	Online only	Revised for Version 2.18 (Release 2011a)
September 2011	Online only	Revised for Version 3.0 (Release 2011b)
March 2012	Online only	Revised for Version 3.1 (Release 2012a)
September 2012	Online only	Revised for Version 3.2 (Release 2012b)
March 2013	Online only	Revised for Version 3.3 (Release 2013a)
September 2013	Online only	Revised for Version 3.4 (Release 2013b)
March 2014	Online only	Revised for Version 3.5 (Release 2014a)

Base Properties — Alphabetical List

ActiveEdge

Purpose	Rising or falling edges of EdgeCount signals
Description	When working with the session-based interface, use the ActiveEdge property to represent rising or falling edges of a EdgeCount signal.
Values	You can set the Active edge of a counter input channel to Rising or Falling.
Examples	s=daq.createSession('ni'); ch=addCounterInputChannel (s,'cDAQ1Mod5', 0, 'EdgeCount')
	ch =
	Data acquisition counter input edge count channel 'ctr0' on device 'Dev2'
	ActiveEdge: Rising CountDirection: Increment InitialCount: O Terminal: 'PFI8' Name: empty ID: 'ctrO' Device: [1x1 daq.ni.DeviceInfo] MeasurementType: 'EdgeCount'
	Change the Active Edge property to 'Falling':
ch.ActiveEdge = 'Falling'	
	ch =
	Data acquisition counter input edge count channel 'ctr0' on device 'Dev2':
	ActiveEdge: Falling CountDirection: Increment InitialCount: O Terminal: 'PFI8' Name: empty

ID: 'ctr0' Device: [1x1 daq.ni.DeviceInfo] MeasurementType: 'EdgeCount'

See Also Functions

addCounterInputChannel, addCounterOutputChannel

ActivePulse

Purpose	Active pulse measurement of PulseWidth counter channel	
Description	When working with the session-based interface , the ActivePulse property displays the pulse width measurement in seconds of your counter channel, with PulseWidth measurement type.	
Values	Active pulse measurement values include:	
	● 'High'	
	• 'Low'	
Examples	Create a session object, add a counter input channel, with the 'EdgeCount' MeasurementType.	
	s=daq.createSession('ni');	
	ch=addCounterInputChannel (s,'cDAQ1Mod5', 0, 'PulseWidth')	
	ch =	
	Data acquisition counter input pulse width channel 'ctr0' on device 'cDAQ1Mod5':	
	ActivePulse: High	
	Terminal: 'PFI4'	
	Name: empty	
	ID: 'ctr1'	
	Device: [1x1 daq.ni.DeviceInfo]	
MeasurementType: 'PulseWidth		
	Change the ActiveEdge property to Low.	
	ch.ActivePulse = 'Low'	
	ch =	
	Data acquisition counter input pulse width channel 'ctr0' on device 'cDAC	
	ActivePulse: Low	

Terminal: 'PFI4' Name: empty ID: 'ctr1' Device: [1x1 daq.ni.DeviceInfo] MeasurementType: 'PulseWidth'

See Also addCounterInputChannel

ADCTimingMode

Purpose	Set channel timing mode	
Description	When working with the session-based interface, use the ADCTimingMode property to specify if the timing mode in of all channels in the device is high resolution or high speed.	
	Note The ADCTimingMode must be the same for all channels on the device.	
Values	You can set the ADCTimingMode to:	
	• 'HighResolution'	
	• 'HighSpeed'	
	• 'Best50HzRejection'	
	• 'Best60HzRejection'	
Examples	Create a session and add an analog input channel:	
	s = daq.createSession('ni'); ch=addAnalogInputChannel(s,'cDAQ1Mod1','ai1','Voltage'); ch	
	ans =	
	Data acquisition analog input voltage channel 'ai1' on device 'cDAQ1Mod1'	
	Coupling: DC TerminalConfig: SingleEnded Range: -10 to +10 Volts Name: '' ID: 'ai1' Device: [1x1 daq.ni.CompactDAQModule] MeasurementType: 'Voltage'	

ADCTimingMode: ''

Set the ADCTimingMode property to 'HighResolution':

ch.ADCTimingMode = 'HighResolution';

See Also addAnalogInputChannel

AutoSyncDSA

Purpose	Automatically Synchronize DSA devices
Description	Use this property to enable or disable automatic synchronization between DSA (PXI or PCI) devices in the same session. By default the sessions automatic synchronization capability is disabled.
Examples	To enable automatic synchronization, create a session and add channels from a DSA device:
	s=daq.createSession('ni') addAnalogInputChannel(s,'PXI1Slot2',0,'Voltage'); addAnalogInputChannel(s,'PXI1Slot3',1,'Voltage');
	Enable automatic synchronization and acquire data"
	s.AutoSyncDSA=true; startForeground(s);
See Also	addAnalogInputChannel

Purpose Display bits per sample
--

Description This property displays the maximum value of bits per sample of the device, based on the device specifications. By default this read-only value is 24.

Example View BitsPerSample Property

Create an audio input session and display session properties.

```
s = daq.createSession('directsound')
```

```
s =
```

```
Data acquisition session using DirectSound hardware:
Will run for 1 second (44100 scans) at 44100 scans/second.
No channels have been added.
```

Properties, Methods, Events

Click on the **Properties** link.

UseStandardSampleRates: true	
BitsPerSample:	24
StandardSampleRates:	[1x15 double]
NumberOfScans:	44100
DurationInSeconds:	1
Rate:	44100
IsContinuous:	false
NotifyWhenDataAvailableExceeds:	4410
IsNotifyWhenDataAvailableExceedsAuto:	true
NotifyWhenScansQueuedBelow:	22050
IsNotifyWhenScansQueuedBelowAuto:	true
ExternalTriggerTimeout:	10
TriggersPerRun:	1
Vendor:	DirectSound
Channels:	1.1
Connections:	1.1

- IsRunning: false
- IsLogging: false
 - IsDone: false
- IsWaitingForExternalTrigger: false
 - TriggersRemaining: 1
 - RateLimit: ''
 - ScansQueued: 0
 - ScansOutputByHardware: 0
 - ScansAcquired: 0
- See Also StandardSampleRates | UseStandardSampleRate | addAudioInputChannel | addAudioOutputChannel

Purpose Specify analog input device bridge mode

Description Use this property in the session-based interface to specify the bridge mode, which represents the active gauge of the analog input channel.

The bridge mode is 'Unknown' when you add a bridge channel to the session. Change this value to a valid mode to use the channel. Valid bridge modes are:

- 'Full' All four gauges are active.
- 'Half'— Only two bridges are active.
- 'Quarter' Only one bridge is active.

Example Set BridgeMode Property

Set the BridgeMode property of a analog input Bridge measurement type channel.

Create a session and add an analog input Bridge channel.

```
s=daq.createSession('ni');
ch=addAnalogInputChannel(s,'cDAQ1Mod7', 0, 'Bridge');
```

Set the BridgeMode property to `Full' and view the channel properties.

ch.BridgeMode='Full'

ch =

Data acquisition analog input channel 'ai0' on device 'cDAQ1Mod7':

```
BridgeMode: Full
ExcitationSource: Internal
ExcitationVoltage: 2.5
NominalBridgeResistance: 'Unknown'
Range: -0.063 to +0.063 VoltsPerVolt
Name: ''
ID: 'ai0'
```

Device: [1x1 daq.ni.CompactDAQModule] MeasurementType: 'Bridge' ADCTimingMode: HighResolution

See Also addAnalogInputChannel

Purpose Specify per-channel allocated memory

Description

Note You cannot use the legacy interface on 64–bit MATLAB[®]. See "Session-Based Interface" to acquire and generate data.

BufferingConfig is a two-element vector that specifies the per-channel allocated memory. The first element of the vector specifies the block size, while the second element of the vector specifies the number of blocks. The total allocated memory (in bytes) is given by

(block size).(number of blocks).(number of channels).(native data type)

You can determine the native data type with daqhwinfo.

You can allocate memory automatically or manually. If BufferingMode is Auto, the BufferingConfig values are automatically set by the engine. If BufferingMode is Manual, then you must manually set the BufferingConfig values. If you change the BufferingConfig values, BufferingMode is automatically set to Manual.

When memory is automatically allocated by the engine, the block-size value depends on the sampling rate and is typically a binary number. The number of blocks is initially set to a value of 30 but can dynamically increase to accommodate the memory requirements. In most cases, the number of blocks used results in a per-channel memory that is somewhat greater than the SamplesPerTrigger value. When you manually allocate memory, the number of blocks is not dynamic and care must be taken to ensure there is sufficient memory to store the acquired data. If the number of samples acquired or queued exceeds the allocated memory, then an error is returned.

You can easily determine the memory allocated and available memory for each device object with the dagmem function.

Characteristics	Usage	AI, AO, common to all channels
	Access	Read/write
	Data type	Two-element vector of doubles
	Read-only when running	Yes
Values	The default value is determined by the engine, and is based on the number of channels contained by the device object and the sampling rate. The BufferingMode value determines whether the values are automatically updated as data is acquired. For analog output objects, the default number of blocks is two.	
		e BufferingConfig property for an analog ously queued output data will get discarded.
Examples	Create the analog inpu to it.	t object ai for a sound card and add two channels
	ai = analoginput('w addchannel(ai,1:2);	insound');
		nber of blocks are given by BufferingConfig, ype for the sound card is given by daqhwinfo.
	ai.BufferingConfig ans = 512 30 out = daghwinfo(ai)	:
	out.NativeDataType ans = int16	,

With this information, the total allocated memory is calculated to be 61,440 bytes. This number is stored by daqmem.

```
out = daqmem(ai);
out.UsedBytes
ans =
61440
```

The allocated memory is more than sufficient to store 8000 two-byte samples for two channels. If more memory was required, then the number of blocks would dynamically grow because BufferingMode is set to Auto.

See Also Functions

daqhwinfo, daqmem

Properties

BufferingMode, SampleRate, SamplesPerTrigger

BufferingMode

Purpose	Specify how memory is allocated		
Description		the legacy interface on 64–bit MATLAB. See ce" to acquire and generate data.	
	BufferingMode can be set to Auto or Manual. If BufferingMode is set to Auto, the data acquisition engine automatically allocates the required memory. If BufferingMode is set to Manual, you must manually allocate memory with the BufferingConfig property.		
If BufferingMode is set to Auto and the SampleRate value then the BufferingConfig values might be recalculated by Specifically, you can increase (decrease) the block size if Sa increased (decreased). If BufferingMode is set to Auto and the BufferingConfig values, then BufferingMode is auton to Manual. If BufferingMode is set to Manual, then you can number of blocks to a value less than three.			
	For most data acquisition applications, you should set BufferingMode to Auto and have memory allocated by the engine because this minimizes the chance of an out-of-memory condition.		
Characteristics	Usage Access Data type Read-only when running	AI, AO, common to all channels Read/write String Yes	
Values		ory is allocated by the data acquisition engine. ory is allocated manually.	

See Also Functions

daqmem

Properties

BufferingConfig

Channel

Purpose	Contain hardware channels added to device object		
Description	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
	Channel is a vector of all the hardware channels contained by an analog input (AI) or analog output (AO) object. Because a newly created AI or AO object does not contain hardware channels, Channel is initially an empty vector. The size of Channel increases as channels are added with the addchannel function, and decreases as channels are removed using the delete function.		
	Channel is used to reference one or more individual channels. To reference a channel, you must know its MATLAB index, which is given by the Index property. For example, you must use Channel with the appropriate indices when configuring channel property values.		
	Therefore, the hardwa first, the hardware cha	re, the scan order follows the MATLAB index. are channel associated with index 1 is sampled annel associated with index 2 is sampled second, the scan order, you can specify a permutation of nel.	
Characteristics	Usage	AI, AO	
	Access	Read/write	
	Data type	Vector of channels	
	Read-only when running	Yes	
Values		ally defined when channels are added to the device annel function. The default value is an empty	

Examples Create the analog input object **ai** for a National Instruments[®] card and add three hardware channels to it.

```
ai = analoginput('nidaq','Dev1');
addchannel(ai,0:2);
```

To set a property value for the first channel added (ID = 0), you must reference the channel by its index using the Channel property.

```
chans = ai.Channel(1);
set(chans,'InputRange',[-10 10])
```

Based on the current configuration, the hardware channels are scanned in order from 0 to 2. To swap the scan order of channels 0 and 1, you can specify the appropriate permutation of the MATLAB indices with Channel.

ai.Channel([1 2 3]) = ai.Channel([2 1 3]);

See Also Functions

addchannel, delete

Properties

HwChannel, Index

ChannelName

Purpose	Specify descriptive channel name		
Description	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
	ChannelName specifies a descriptive name for a hardware channel. If a channel name is defined, then you can reference that channel by its name. If a channel name is not defined, then the channel must be referenced by its index. Channel names are not required to be unique.		
	You can also define descriptive channel names when channels are added to a device object with the addchannel function.		
Characteristics	Usage	AI, AO, per channel	
	Access Data type Read-only when	Read/write String Yes	
Values	running The default value is an empty string. To reference a channel by name		
	it must contain only letters, numbers, and underscores and must begin with a letter.		
Examples	amples Create the analog input object ai for a sound card and add two ch to it.		
	ai = analoginput('winsound'); addchannel(ai,1:2);		
	To assign a descriptive name to the first channel contained by ai: Chan1 = ai.Channel(1) set(Chan1,'ChannelName','Joe')		

You can now reference this channel by name instead of by index.

set(ai.Joe,'Units','Decibels')

See Also Functions

addchannel

Channels

Purpose	Array of channel objects associated with session object		
Description	This session object property contains and displays an array of channels added to the session. For more information on the session-based interface, see "Session-Based Interface".		
	Tip You cannot directly add or remove channels using the Channels object properties. Use addAnalogInputChannel and addAnalogOutputChannel to add channels. Use removeChannel to remove channels.		
Values	The value is determined by the channels you add to the session object.		
Example	Access Channels Property		
-	Create both analog and digital channels in a session and display the Channels property.		
	Create a session object, add an analog input channel, and display the session Channels property.		
	s=daq.createSession('ni'); aich=addAnalogInputChannel(s,'cDAQ1Mod7', 0, 'Bridge');		
	aich =		
	Data acquisition analog input channel 'aiO' on device 'cDAQ1Mod7':		
	BridgeMode: Unknown ExcitationSource: Internal ExcitationVoltage: 2.5 NominalBridgeResistance: 'Unknown' Range: -0.025 to +0.025 VoltsPerVolt Name: '' ID: 'ai0' Device: [1x1 daq.ni.CompactDAQModule]		

Channels

MeasurementType: 'Bridge' ADCTimingMode: HighResolution

Properties, Methods, Events

Add an analog output channel and view the Channels property.

```
aoch=addAnalogOutputChannel(s,'cDAQ1Mod2', 'ao1', 'Voltage')
```

aoch =

Data acquisition analog output voltage channel 'ao1' on device 'cDAQ1!

```
TerminalConfig: SingleEnded
Range: -10 to +10 Volts
Name: ''
ID: 'ao1'
Device: [1x1 daq.ni.CompactDAQModule]
MeasurementType: 'Voltage'
```

Add a digital channel with 'InputOnly'

dich=addDigitalChannel(s,'dev1', 'PortO/LineO:1', 'InputOnly')

dich =

Number of channels: 2 index Type Device Channel MeasurementType Range Name 1 dio Dev1 port0/line0 InputOnly n/a 2 dio Dev1 port0/line1 InputOnly n/a

Change the InputType property of the input channel to SingleEnded.

aich.InputType='SingleEnded';

You can use the channel object to access and edit the Channels property.

See Also

Functions

addAnalogInputChannel, addAnalogOutputChannel

Purpose	Specify time betwee	on consecutive scanned hardware channels	
Description	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
	ChannelSkew applie sample and hold (S	s only to scanning hardware and not to simultaneous S/H) hardware.	
	If ChannelSkewMode is set to Minimum or Equisample, then ChannelSk is automatically set to the appropriate device-specific read-only value For SS/H hardware, the only valid ChannelSkew value is zero. For sor vendors, ChannelSkewMode is automatically set to Manual if you first set ChannelSkew to a valid value.		
Characteristics	Usage	AI, common to all channels	
	Access	Read/write (depends on ChannelSkewMode value)	
	Data type	Double	
	Read-only when running	Yes	
Values	For SS/H hardware, the only valid value is zero. For scanning hardware, the value depends on ChannelSkewMode. ChannelSkew is specified in seconds.		
See Also	Properties		
	- ChannelSkewMode		

ChannelSkewMode

Purpose	Specify how channel sl	xew is determined	
Description	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
	is None. For scanning Equisample, or Manual includes sound cards, Measurement Comput	ple and hold (SS/H) hardware, ChannelSkewMode hardware, ChannelSkewMode can be Minimum, . (National Instruments only). SS/H hardware while scanning hardware includes most ing [™] and NI boards. Note that some supported lors are SS/H, such as Measurement Computing's	
	If ChannelSkewMode is Minimum, then the minimum channel skew supported by the hardware is used. Some vendors refer to this as burst mode. If ChannelSkewMode is Equisample, the channel skew is given by [(sampling rate)(number of channels)] ⁻¹ . If ChannelSkewMode is Manual, then you must specify the channel skew with the ChannelSkew property. For some vendors, ChannelSkewMode is automatically set to Manual if you first set ChannelSkew to a valid value.		
	-	se the maximum sampling rate of your hardware, lSkewMode to Equisample.	
	Large loads on the input device, especially if you are using multiple channels with scanning hardware, can increase the settling time. To improve the settling time, set ChannelSkewMode to Equisample and lower your sample rate.		
Characteristics	Usage Access	AI, common to all channels Read/write	

	Data type	String
	Read-only when running	Yes
Values	Advantech ®	
	{Equisample}	The channel skew is given by [(sampling rate)(number of channels)] ⁻¹ .
	Measurement C	omputing
	{Minimum}	The channel skew is set to the minimum supported value.
	Equisample	The channel skew is given by [(sampling rate)(number of channels)] ⁻¹ .
	National Instru	nents
	{Minimum}	The channel skew is set to the minimum supported value.
	Equisample	The channel skew is given by [(sampling rate)(number of channels)] ⁻¹ .
	Manual	The channel skew is given by ChannelSkew.
	Sound Cards	
	{None}	This is the only supported value for SS/H hardware.
Examples	Create an analog i	nput object for an MCC device and add eight channels.
	ai = analoginput addchannel(ai,0)	

Using the default ChannelSkewMode value of Min and the default SampleRate value of 1000, the corresponding ChannelSkew value is

ai.ChannelSkew ans = 1.0000e-005

To use the maximum sampling rate, set $\ensuremath{\mathsf{ChannelSkewMode}}$ to Equisample.

ai.ChannelskewMode = 'Equisample'; ai.Samplerate = 100000/8;

See Also Properties

ChannelSkew, SampleRate

Purpose Specify clock that governs hardware conversion rate

Description

Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.

For all supported hardware except Measurement Computing analog output subsystems, ClockSource can be set to Internal, which specifies that the acquisition rate is governed by the internal hardware clock.

Use this table to map to the National Instruments terminology.

Data Acquisition Toolbox™	NI_DAQmx
Scan Clock	Sample Clock
Sample Clock	Convert Clock

For subsystems without a hardware clock, you must use software clocking to govern the sampling rate. Software clocking allows a maximum sampling rate of 500 Hz and a minimum sampling rate of 0.0002 Hz. An error is returned if more than 1 sample of jitter is detected. Note that you might not be able to attain rates over 100 Hz on all systems.

Characteristics	Usage	AI, AO, common to all channels
	Access	Read/write
	Data type	String
	Read-only when running	Yes

ClockSource

Values

Advantech	
{Internal}	The internal hardware clock is used (AI only).
External	Externally control the channel clock (AI only).
Software	The computer clock is used.
Measurement Computing	
{Internal}	The internal hardware clock is used.
External	Externally control the channel clock.
Software	The computer clock is used.

National Instruments

{Internal}	The internal hardware clock is used.
External	Externally control the channel clock (AO only).
ExternalSampleCtr	Externally control the channel clock. This value overrides the ChannelSkew property value (AI only). This value does not apply to cards with simultaneous sample and hold.

Note If you set ClockSource to ExternalSampleCtrl then the value of ExternalSampleClockSource specifies the pin whose signal is used as the channel clock for conversions on each channel.

ExternalScanCtrl	Externally control the scan clock. This value
	overrides the SampleRate property value (AI
	only).

Note If you set ClockSource to ExternalScanCtrl then the value of ExternalScanClockSource specifies the pin whose signal is used as the scan clock to initiate conversions across a group of channels.

ExternalSampleAndSEanQtrally control the channel and scan clocks. This value overrides the ChannelSkew and SampleRate property values (AI only). This value does not apply to cards with simultaneous sample and hold.

> **Note** If you set ClockSource to ExternalSampleAndScanCtrl then the value of ExternalSampleClockSource specifies the pin whose signal is used as the channel clock for conversions on each channel, and the value of ExternalScanClockSource specifies the pin whose signal is used as the scan clock to initiate conversions across a group of channels.

Note If you set the ClockSource property to one of the External options, you must also set the SampleRate property to a value close to the external clock rate. SampleRate does not directly affect the external device, and the device will not use SampleRate if you have set an external clock rate, but this ensures that the toolbox configures itself correctly for expected data rates.

ClockSource

Sound Cards

{Internal}

The internal hardware clock is used.

See Also Properties

ChannelSkew, SampleRate

Purpose	Array of connections in session
Description	This session property contains and displays all connections added to the session.
	Tip You cannot directly add or remove connections using the Connections object properties. Use addTriggerConnection and addClockConnection to add connections. Use removeConnection to remove connections.
Values	The value is determined by the connections you add to the session.
Examples	Remove Synchronization Connection
	This example shows you how to remove a synchronization connection.
	Create a session and add analog input channels and trigger and clock connections.
	<pre>s=daq.createSession('ni') addAnalogInputChannel(s,'Dev1', 0, 'voltage'); addAnalogInputChannel(s,'Dev2', 0, 'voltage'); addAnalogInputChannel(s,'Dev3', 0, 'voltage'); addTriggerConnection(s,'Dev1/PFI4','Dev2/PFI0','StartTrigger'); addTriggerConnection(s,'Dev1/PFI4','Dev3/PFI0','StartTrigger'); addClockConnection(s,'Dev1/PFI5','Dev2/PFI1','ScanClock');</pre>
	Examine the session Connections property.
	s.Connections
	ans =
	Start Trigger is provided by 'Dev1' at 'PFI4' and will be received by: 'Dev2' at terminal 'PFIO'

Remove the last clock connection at index 4 and display the session connections.

See Also Function

addTriggerConnection, addClockConnection,

```
Purpose
                     Specify direction of counter channel
Description
                     When working with the session-based interface, use the CountDirection
                     property to set the direction of the counter. Count direction can be
                     'Increment', in which case the counter operates in incremental order, or
                     'Decrement', in which the counter operates in decrements.
Examples
                     Create a session object, add a counter input channel, and change the
                     CountDirection.
                     s=daq.createSession('ni');
                     ch=addCounterInputChannel (s,'cDAQ1Mod5', 0, 'EdgeCount')
                     ch =
                     Data acquisition counter input edge count channel 'ctr0' on device 'cDAQ1Mod5':
                          ActiveEdge: Rising
                      CountDirection: Increment
                        InitialCount: 0
                            Terminal: 'PFI8'
                               Name: empty
                                 ID: 'ctr0'
                             Device: [1x1 daq.ni.DeviceInfo]
                      MeasurementType: 'EdgeCount'
                     Change CountDirection to 'Decrement':
                     ch.CountDirection = 'Decrement'
                     ch =
                     Data acquisition counter input edge count channel 'ctr0' on device 'cl
                            ActiveEdge: Rising
                       CountDirection: Decrement
                          InitialCount: 0
```

Terminal: 'PFI8' Name: empty ID: 'ctr0' Device: [1x1 daq.ni.DeviceInfo] MeasurementType: 'EdgeCount'

See Also addCounterInputChannel

Purpose Specify callback function to execute when data is missed

Description

Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.

A data missed event is generated immediately after acquired data is missed. This event executes the callback function specified for DataMissedFcn. The default value for DataMissedFcn is daqcallback, which displays the event type and the device object name.

In most cases, data is missed because:

- The engine cannot keep up with the rate of acquisition.
- The driver wrote new data into the hardware's FIFO buffer before the previously acquired data was read. You can usually avoid this problem by increasing the size of the memory block with the BufferingConfig property.

Data missed event information is stored in the Type and Data fields of the EventLog property. The Type field value is DataMissed. The Data field values are given below.

Data Field Value	Description
AbsTime	The absolute time (as a clock vector) the event occurred.
RelSample	The acquired sample number when the event occurred.

When a data missed event occurs, the analog input object is automatically stopped.

Characteristics	Usage	AI, common to all channels
	Access	Read/write
	Data type	String
	Read-only when running	No
Values	The default value is dat	jcallback.
See Also	Functions	
	daqcallback	
	Properties	
	EventLog	

Purpose	Specify value held by an	alog output subsystem		
Description	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.			
		specifies the value to write to the analog output ata is finished being output from the engine.		
	DefaultChannelValue is used only when OutOfDataMode is set to DefaultValue. This property guarantees that a known value is held by the AO subsystem if a run-time error occurs. Note that sound cards do not have an OutOfDataMode property.			
Characteristics	Usage Access	AO, per channel Read/write		
	Data type	Double		
	Read-only when running	Yes		
Values	The default value is zer	0.		
Examples	<pre>Create the analog output object ao and add two channels to it. ao = analogoutput('nidaq','Dev1'); addchannel(ao,0:1);</pre>			
	You can configure ao so that when it stops outputting data, a value of 1 volt is held for both channels.			
	ao.OutOfDataMode = 'DefaultValue'; ao.Channel.DefaultChannelValue = 1.0;			

DefaultChannelValue

See Also

Properties

OutOfDataMode

Purpose	Indicates trigger	destination	terminal
---------	-------------------	-------------	----------

Description When working with the session-based interface, the Destination property indicates the device and terminal to which you connect a trigger.

Example Examine a Trigger Connection Destination

Create a session with a trigger connection and examine the connection properties.

Create a session and add 2 analog input channels form different devices.

s=daq.createSession('ni'); addAnalogInputChannel(s,'Dev1', 0, 'voltage'); addAnalogInputChannel(s,'Dev2', 0, 'voltage');

Add a trigger connection and examine the connection properties.

addTriggerConnection(s,'Dev1/PFI4','Dev2/PFI0','StartTrigger')

ans =

Start Trigger is provided by 'Dev1' at 'PFI4' and will be received by

TriggerType: 'Digital' TriggerCondition: RisingEdge Source: 'Dev1/PFI4' Destination: 'Dev2/PFI0' Type: StartTrigger

See Also Source, addTriggerConnection

Device

Purpose	Channel device information
Description	When working with the session-based interface, the read-only Device property displays device information for the channel.
Examples	Create a session object, add a counter input channel, and view the Device property.
	<pre>s=daq.createSession('ni');</pre>
	<pre>ch=addCounterInputChannel(s,'cDAQ1Mod5', 0, 'EdgeCount');</pre>
	ch.Device
	ans =
	ni cDAQ1Mod5: National Instruments NI 9402
	Counter input subsystem supports:
	Rates from 0.1 to 80000000.0 scans/sec
	2 channels
	'EdgeCount','PulseWidth','Frequency','Position' measurement types
	Counter output subsystem supports:
	Rates from 0.1 to 80000000.0 scans/sec
	3 channels
	'PulseGeneration' measurement type
	This module is in chassis 'cDAQ1', slot 5
See Also	addCounterInputChannel, addCounterOutputChannel

Purpose Specify digital channel direction

Description When you add a digital channel or a group to a session, you can specify the measurement type to be:

- Input
- Output
- Unknown

When you specify the MeasurementType as Bidirectional, you can use the channel to input and output messges. By default the channel is set to Unknown. Change the direction to output singnal on the channel.

Example To change the direction of a bidirectional signal on a digital channel in the session **s**, type:

s.Channels(1).Direction='Output';

Change the Direction of a Digital Channel

Change the direction of a bidirectional digital channel to Input.

Create a session and add a bidirectional digital channel.

```
s=daq.createSession('ni')
ch=addDigitalChannel(s,'dev6', 'Port0/Line0', 'Bidirectional')
ch =
Data acquisition digital bidirectional (unknown) channel 'port0/line0
Direction: Unknown
Name: ''
ID: 'port0/line0'
Device: [1x1 daq.ni.DeviceInf0]
MeasurementType: 'Bidirectional (Unknown)'
```

Change the channels direction to 'Input'.

```
ch.Direction='Input'
ch =
Data acquisition digital bidirectional (input) channel 'port0/line0' on c
Direction: Input
Name: ''
ID: 'port0/line0'
Device: [1x1 daq.ni.DeviceInfo]
MeasurementType: 'Bidirectional (Input)'
```

Properties, Methods, Events

Purpose	Specify whether line is for input or output				
Description		Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.			
	When adding hardware lines to a digital I/O object with addline, you must configure the line direction. The line direction can be In or Out, and is automatically stored in Direction. If a line direction is In, you can only read a value from that line. If a line direction is Out, you can write or read a line value.				
	using Direction. For	For line-configurable devices, you can change individual line directions using Direction. For port-configurable devices, you cannot change individual line directions.			
Characteristics	Access Data type	DIO, per line Read/write String			
	Read-only when running	Yes			
Values	{In}	The line can be read from.			
	Out	The line can be read from or written to.			
Examples	Create the digital I/O object dio and add two input lines and two output lines to it.				
	dio = digitalio('nidaq','Dev1'); addline(dio,0:3,{'In','In','Out','Out'});				

Direction

To configure all lines for output:

dio.Line(1:2).Direction = 'Out';

See Also Functions

addline

Purpose	Specify duration of acquisition		
Description	When working with the session-based interface, use the DurationInSeconds property to change the duration of an acquisition. When the session contains output channels, DurationInSeconds becomes a read only property and its value is determined by		
	$\frac{s.ScansQueued}{s.Rate}.$		
Values	In a session with only input channels, you can enter a value in seconds for the length of the acquisition. Changing the duration changes the number of scans accordingly. By default, the DurationInSeconds is set to 1 second.		
Examples	Create a session object, add an analog input channel, and change the duration: s=daq.createSession('ni'); addAnalogInputChannel(s,'cDAQ1Mod1','ai0','voltage'); s.DurationInSeconds = 2 s = Data acquisition session using National Instruments hardware: Will run for 2 seconds (2000 scans) at 1000 scans/second. Operation starts immediately. Number of channels: 1 index Type Device Channel InputType Range Name 		
See Also	Properties		
	NumberOfScans, Rate		
	Functions		
	addCounterInputChannel		

DutyCycle

Purpose	Duty cycle of counter output channel
Description	When working with the session-based interface, use the DutyCycle property to specify the fraction of time that the generated pulse is in active state.
	Duty cycle is the ratio between the duration of the pulse and the pulse period. For example, if a pulse duration is 1 microsecond and the pulse period is 4 microseconds, the duty cycle is 0.25. In a square wave, you will see that the time the signal is high is equal to the time the signal is low.
Examples	Specify Duty Cycle

 $Create \ a \ session \ object \ and \ add \ a \ `\texttt{PulseGeneration'} \ counter \ output \ channel:$

```
s=daq.createSession('ni');
ch=addCounterOutputChannel(s,'cDAQ1Mod5', 'ctr0', 'PulseGeneration')
```

ch =

Data acquisition counter output pulse generation channel 'ctr0' on device

```
IdleState: Low
InitialDelay: 2.5e-08
Frequency: 100
DutyCycle: 0.5
Terminal: 'PFIO'
Name: ''
ID: 'ctrO'
Device: [1x1 daq.ni.CompactDAQModule]
MeasurementType: 'PulseGeneration'
```

Change the DutyCycle to 0.25 and display the channel:

ch.DutyCycle

```
ch =
Data acquisition counter output pulse generation channel 'ctr0' on dev
IdleState: Low
InitialDelay: 2.5e-08
Frequency: 100
DutyCycle: 0.25
Terminal: 'PFI0'
Name: ''
ID: 'ctr0'
Device: [1x1 daq.ni.CompactDAQModule]
MeasurementType: 'PulseGeneration'
```

See Also Class

addCounterOutputChannel

EncoderType

Purpose Encoding type of counter channel

Description When working with the session-based interface, use the EncoderType property to specify the encoding type of the counter input 'Position' channel.

Encoder types include:

- 'X1'
- 'X2'
- 'X4'
- 'TwoPulse'

Example Change EncoderType Property

Change the EncodeType property of a counter input channel with a **Position** measurement type.

Create a session and add a counter input channel with Position measurement type.

```
s=daq.createSession('ni');
ch=addCounterInputChannel(s,'cDAQ1Mod5', 'ctr0', 'Position')
```

ch =

Data acquisition counter input position channel 'ctr0' on device 'cDAQ1Mc

```
EncoderType: X1
ZResetEnable: O
ZResetValue: O
ZResetCondition: BothHigh
TerminalA: 'PFIO'
TerminalB: 'PFI2'
TerminalZ: 'PFI1'
Name: ''
ID: 'ctrO'
```

EncoderType

```
Device: [1x1 daq.ni.CompactDAQModule]
                 MeasurementType: 'Position'
                 Change the channels encoder type to X2.
                 ch.EncoderType='X2'
                  ch =
                 Data acquisition counter input position channel 'ctr0' on device 'cDA
                      EncoderType: X2
                     ZResetEnable: 0
                      ZResetValue: 0
                  ZResetCondition: BothHigh
                        TerminalA: 'PFIO'
                        TerminalB: 'PFI2'
                        TerminalZ: 'PFI1'
                             Name: ''
                               ID: 'ctr0'
                           Device: [1x1 daq.ni.CompactDAQModule]
                 MeasurementType: 'Position
See Also
                  addCounterInputChannel
```

EnhancedAliasRejectionEnable property

Purpose	Set enhanced alias rejection mode			
Description	Enable or disable the enhanced alias rejection on your DSA device's analog channel. See "Synchronize DSA Devices" for more information. Enhanced alias reject is disabled by default. This property only takes logical values.			
	<pre>s.Channels(1).EnhancedAliasRejectionEnable = 1</pre>			
	You cannot modify enhanced rejection mode if you are synchronizing your DSA device using AutoSyncDSA.			
Example	Enable Enhanced Alias Rejection			
	Enable enhanced alias rejection on a DSA device.			
	Create a session and add an analog input voltage channel using a DSA device.			
	s=daq.createSession('ni'); ch=addAnalogInputChannel(s,'PXI1Slot2', 0, 'Voltage')			
	ch =			
	Data acquisition analog input voltage channel 'aiO' on device 'PXI1Slot2'			
	Coupling: DC TerminalConfig: PseudoDifferential Range: -42 to +42 Volts Name: '' ID: 'ai0' Device: [1x1 daq.ni.PXIDSAModule] MeasurementType: 'Voltage' EnhancedAliasRejectionEnable: 0 Enable enhanced alias rejection.			
	ch.EnhancedAliasRejectionEnable = 1			

EnhancedAliasRejectionEnable property

ch =
Data acquisition analog input voltage channel 'ai0' on device 'PXI1SI
Coupling: DC
TerminalConfig: PseudoDifferential
Range: -42 to +42 Volts
Name: ''
ID: 'ai0'
Device: [1x1 daq.ni.PXIDSAModule]
MeasurementType: 'Voltage'
EnhancedAliasRejectionEnable: 1

See Also AutoSyncDSA

EventLog

Store information for specific events

Description

Purpose

Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.

Eventlog is a structure array that stores information related to specific analog input (AI) or analog output (AO) events. Event information is stored in the Type and Data fields of EventLog. Type stores the event type. The logged event types are shown below.

Event Type	Description	AI	AO
Data missed	Data is missed by the engine.	\checkmark	
Input overrange	A signal exceeds the hardware input range.	✓	
Run-time error	A run-time error is encountered. Run-time errors include timeouts and hardware errors.	V	V
Start	The start function is issued.	V	V
Stop	The device object stops executing.	V	√
Trigger	A trigger executes.	\checkmark	 Image: A start of the start of

Timer events, samples available events (AI), and samples output events (AO) are not logged.

Data stores event-specific information associated with the event type in several fields. For all stored events, Data contains the RelSample field, which returns the input or output sample number at the time the event occurred. For the start, stop, run-time error, and trigger events, Data contains the AbsTime field, which returns the absolute time (as a clock vector) the event occurred. Other event-specific fields are included in Data. For a description of these fields, refer to "Events and Callbacks" for analog input objects and analog output objects, or the appropriate reference pages in this chapter.

EventLog can store a maximum of 1000 events. If this value is exceeded, then the most recent 1000 events are stored. You can use the showdagevents function to easily display stored event information.

Characteristics	Usage	AI, AO, common to all channels	
	Access	Read-only	
	Data type	Structure array	
	Read-only when running	N/A	
Values	Values are automatically added as events occur. The default value is an empty structure array.		
Examples	Create the analog input object ai and add four channels to it.		
	ai = analoginput('nidaq','Dev1'); chans = addchannel(ai,0:3);		
	Acquire 1 second of data and display the logged event types.		
	<pre>start(ai) events = ai.EventLog; {events.Type} ans =</pre>		
	'Start' 'Tr	igger' 'Stop	
	To examine the data associated with the trigger event:		
	events(2).Data ans =		
	AbsTime: [19 RelSample: O	99 2 12 14 54 52.5456]	

EventLog

Channel: [] Trigger: 1

See Also

Functions

showdaqevents

Purpose Voltage of external source of excitation

Description When working with the session-based interface, the ExcitationCurrent property indicates the current in amps that you use to excite an IEPE accelerometer, IEPE microphone, generic IEPE sensors, and RTDs.

The default ExcitationCurrent is typically determined by the device. If the device supports an range of excitation currents, the default will be the lowest available value in the range.

Example Change Excitation Current Value

Change the excitation current value of a microphone channel.

Create a session and add an analog input microphone channel.

```
s=daq.createSession('ni');
ch=addAnalogInputChannel(s,'cDAQ1Mod3', 0, 'Microphone')
```

ch =

Data acquisition analog input microphone channel 'ai0' on device 'cDA(

Sensitivity:	'Unknown'
MaxSoundPressureLevel:	'Unknown'
ExcitationCurrent:	0.002
ExcitationSource:	Internal
Coupling:	AC
TerminalConfig:	PseudoDifferential
Range:	-5.0 to +5.0 Volts
Name:	1.1
ID:	'ai0'
Device:	[1x1 daq.ni.CompactDAQModule]
MeasurementType:	'Microphone'
ADCTimingMode:	1.1

Change the excitation current value to 0.0040.

ch.ExcitationCurrent=.0040

ExcitationCurrent

```
ch =
Data acquisition analog input microphone channel 'ai0' on device 'cDAQ1Mo
    Sensitivity: 'Unknown'
MaxSoundPressureLevel: 'Unknown'
ExcitationCurrent: 0.004
ExcitationSource: Internal
    Coupling: AC
    TerminalConfig: PseudoDifferential
    Range: -5.0 to +5.0 Volts
    Name: ''
        ID: 'ai0'
    Device: [1x1 daq.ni.CompactDAQModule]
MeasurementType: 'Microphone'
    ADCTimingMode: ''
```

See Also Properties

ExcitationSource

Functions

addAnalogInputChannel

Purpose External source of excitation

Description When working with the session-based interface, the ExcitationSource property indicates the source of ExcitationVoltage for bridge measurements or ExcitationCurrent for IEPE sensors and RTDs. Excitation source can be:

- Internal
- External
- None
- Unknown

By default, ExcitationSource is set to Unknown.

Example Change Excitation Source

Change the excitation source of a microphone channel.

Create a session and add an analog input microphone channel.

```
s=daq.createSession('ni');
ch=addAnalogInputChannel(s,'cDAQ1Mod3', 0, 'Microphone')
```

ch =

Data acquisition analog input microphone channel 'ai0' on device 'cDAG

```
Sensitivity: 'Unknown'
MaxSoundPressureLevel: 'Unknown'
ExcitationCurrent: 0.004
ExcitationSource: Unknown
Coupling: AC
TerminalConfig: PseudoDifferential
Range: -5.0 to +5.0 Volts
Name: ''
ID: 'ai0'
```

Device: [1x1 daq.ni.CompactDAQModule] MeasurementType: 'Microphone' ADCTimingMode: '' Change the excitation current value to 'Internal'. ch.ch.ExcitationSource='Internal' ch = Data acquisition analog input microphone channel 'ai0' on device 'cDAQ1Mc Sensitivity: 'Unknown' MaxSoundPressureLevel: 'Unknown' ExcitationCurrent: 0.004 ExcitationSource: Internal Coupling: AC TerminalConfig: PseudoDifferential Range: -5.0 to +5.0 Volts Name: '' ID: 'aiO' Device: [1x1 daq.ni.CompactDAQModule] MeasurementType: 'Microphone' ADCTimingMode: ''

See Also Properties

ExcitationCurrent

ExcitationVoltage

Functions

addAnalogInputChannel

Purpose Voltage of excitation source

Description When working with RTD measurements in the session-based interface, the ExcitationVoltage property indicates the excitation voltage value to apply to bridge measurements.

The default ExcitationVoltage is typically determined by the device. If the device supports a range of excitation voltages, the default will be the lowest available value in the range.

See Also Properties

ExcitationSource

ExternalTriggerTimeout

Description When working with the session-based interface, the ExternalTriggerTimeout property indicates time the session waits before an external trigger times out.

Example Specify External Trigger Timeout

Specify how long the session waits for an external trigger before timing out.

```
s=daq.createSession('ni')
```

s =

```
Data acquisition session using National Instruments hardware:
Will run for 1 second (1000 scans) at 1000 scans/second.
No channels have been added.
```

Properties, Methods, Events

```
AutoSyncDSA: false

NumberOfScans: 1000

DurationInSeconds: 1

Rate: 1000

IsContinuous: false

NotifyWhenDataAvailableExceeds: 100

IsNotifyWhenDataAvailableExceedsAuto: true

NotifyWhenScansQueuedBelow: 500

IsNotifyWhenScansQueuedBelowAuto: true

ExternalTriggerTimeout: 10

TriggersPerRun: 1

Vendor: National Instruments

Channels: ''
```

IsRunning: false IsLogging: false IsDone: false IsWaitingForExternalTrigger: false TriggersRemaining: 1 RateLimit: '' ScansQueued: 0 ScansOutputByHardware: 0 ScansAcquired: 0

Change the timeout to 15 seconds.

s.ExternalTriggerTimeout=15

- s =
- Data acquisition session using National Instruments hardware: Will run for 1 second (1000 scans) at 1000 scans/second. No channels have been added.

See Also addTriggerConnection

Frequency

Purpose	Frequency of generated pulses on counter output channel		
Description	When working with the session-based interface, use the Frequency property to set the pulse repetition rate of a counter input channel .		
Values	Specify the frequency in hertz.		
Examples	Create a session object and add a ' PulseGeneration ' counter output channel:		
	s = daq.createSession('ni'); ch=addCounterOutputChannel(s,'cDAQ1Mod5', 'ctr0', 'PulseGeneration')		
	Change the Frequency to 200 and display the channel:		
	ch.Frequency = 200;		
	ch		
	ans =		
	Data acquisition counter output pulse generation channel 'ctrO' on device		
	IdleState: Low InitialDelay: 2.5e-008 Frequency: 200 DutyCycle: 0.5 Terminal: 'PFI12' Name: empty ID: 'ctr0' Device: [1x1 daq.ni.DeviceInfo] MeasurementType: 'PulseGeneration'		
See Also	addCounterInputChannel		

Description

Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.

All channels contained by a device object have a hardware channel ID and an associated MATLAB index. The channel ID is given by HwChannel and the MATLAB index is given by the Index property. The HwChannel value is defined when hardware channels are added to a device object with the addchannel function.

The beginning channel ID value depends on the hardware device. For National Instruments hardware, channel IDs are zero-based (begin at zero). For sound cards, channel IDs are one-based (begin at one).

For scanning hardware, the scan order follows the MATLAB index. Therefore, the hardware channel associated with index 1 is sampled first, the hardware channel associated with index 2 is sampled second, and so on. To change the scan order, you can assign the channel IDs to different indices using HwChannel.

Characteristics	Usage	AI, AO, per channel
	Access	Read/write
	Data type	Double
	Read-only when running	Yes

ValuesValues are automatically defined when channels are added to the device
object with the addchannel function. The default value is one.

Examples Create the analog input object ai for a National Instruments board and add the first three hardware channels to it.

```
ai = analoginput('nidaq','Dev1');
addchannel(ai,0:2);
```

Based on the current configuration, the hardware channels are scanned in order from 0 to 2. To swap the scan order of channels 0 and 1, you can assign these channels to the appropriate indices using HwChannel.

ai.Channel(1).HwChannel = 1; ai.Channel(2).HwChannel = 0;

See Also Functions

addchannel

Properties

Channel, Index

_			
Purpose	Specify hardware line ID		
Description	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
	associated MATLAB index the MATLAB index is give	gital I/O object have a hardware ID and an a. The hardware ID is given by HwLine and an by the Index property. The HwLine value lines are added to a digital I/O object with	
		ue depends on the hardware device. For dware, line IDs are zero-based (begin at zero).	
Characteristics	Usage	DIO, per line	
	Access	Read/write	
	Data type	Double	
	Read-only when running	Yes	
Values		defined when lines are added to the digital I/O unction. The default value is one.	
Examples	Suppose you create the dig lines to it.	gital I/O object dio and add four hardware	
	<pre>dio = digitalio('nidaq', 'Dev1'); addline(dio,0:3, 'out'); addline automatically assigns the indices 1-4 to these hardware lines. You can swap the hardware lines associated with index 1 and index 2 with HwLine.</pre>		
	<pre>dio.Line(1).HwLine = 1</pre>	;	

HwLine

dio.Line(2).HwLine = 0;

See Also Functions

addline

Properties

Line, Index

```
Purpose
                     ID of channel in session
Description
                     When working with the session-based interface, the ID property
                     displays the ID of the channel. You set the channel ID when you add
                     the channel to a session object.
Values
Examples
                     Create a session object, add a counter input channel, with the ID
                     'ctr0'.
                     s=daq.createSession('ni');
                     ch=addCounterInputChannel (s,'cDAQ1Mod5', 'ctr0', 'EdgeCount')
                     ch=
                     Data acquisition counter input edge count channel 'ctr0' on device 'cDAQ1Mod5':
                          ActiveEdge: Rising
                      CountDirection: Increment
                        InitialCount: 0
                            Terminal: 'PFI8'
                               Name: empty
                                 ID: 'ctr0'
                             Device: [1x1 daq.ni.DeviceInfo]
                      MeasurementType: 'EdgeCount'
                     Change CountDirection to 'Decrement':
                     ch.CountDirection = 'Decrement'
                     ch=
                     Data acquisition counter input edge count channel 'ctr0' on device 'cl
                            ActiveEdge: Rising
                       CountDirection: Decrement
```

InitialCount: O Terminal: 'PFI8' Name: empty ID: 'ctrO' Device: [1x1 daq.ni.DeviceInfo] MeasurementType: 'EdgeCount'

See Also addCounterInputChannel

```
Purpose
                  Default state of counter output channel
Description
                  When working with the session-based interface, the IdleState
                  property indicates the default state of the counter output channel
                  with a 'PulseGeneration' measurement type when the counter is
                  not running.
Values
                  IdleState is either 'High' or 'Low'.
Examples
                  Create a session object and add a 'PulseGeneration' counter output
                  channel:
                  s = daq.createSession('ni');
                  s.addCounterOutputChannel('cDAQ1Mod5', 'ctr0', 'PulseGeneration')
                  Change the IdleState property to 'High' and display the channel:
                  s.Channels.IdleState = 'High';
                  s.Channels
                  ans =
                  Data acquisition counter output pulse generation channel 'ctr0' on dev
                          IdleState: High
                       InitialDelay: 2.5e-008
                          Frequency: 100
                          DutyCycle: 0.5
                           Terminal: 'PFI12'
                               Name: empty
                                 ID: 'ctr0'
                             Device: [1x1 daq.ni.DeviceInfo]
                   MeasurementType: 'PulseGeneration'
See Also
                  addCounterOutputChannel
```

Index

Purpose	MATLAB index of hardwa	re channel or line	
Description		legacy interface on 64–bit MATLAB. See to acquire and generate data.	
	Every hardware channel (line) contained by a device object has an associated MATLAB index that is used to reference that channel (line). For example, to configure property values for an individual channel, you must reference the channel through the Channel property using the appropriate Index value. Likewise, to configure property values for an individual line, you must reference the line through the Line property using the appropriate Index value.		
	For channels (lines), you can assign indices automatically with the addchannel (addline) function. Channel (line) indices always begin at 1 and increase monotonically up to the number of channels (lines) contained by the device object. For channels, index assignments can also be made manually with the addchannel function.		
	For scanning hardware, the scan order follows the MATLAB index. Therefore, the hardware channel associated with index 1 is sampled first, the hardware channel associated with index 2 is sampled second, and so on. To change the scan order, you can assign the channel IDs to different indices using the HwChannel or Channel property.		
	Index provides a convenie programmatically.	ent way to access channels and lines	
Characteristics	Usage Access	AI, AO, per channel; DIO, per line Read-only	
	Data type	Double	
	Read-only when running	N/A	

Values	Values are automatically defined when channels (lines) are added to the device object with the addchannel (addline) function. The default value is one.
Examples	Create the analog input object ai for a sound card and add two hardware channels to it.
	ai = analoginput('winsound'); chans = addchannel(ai,1:2);
	You can access the MATLAB indices for these channels with Index.
	<pre>Index1 = chans(1).Index; Index2 = chans(2).Index;</pre>
See Also	Functions
	addchannel, addline
	Properties

Channel, HwChannel, HwLine, Line

InitialDelay

Purpose	Delay until output channel generates pulses
Description	When working with the session-based interface, use the InitialDelay property to set an initial delay on the counter output channel in which the counter is running but does not generate any pulse.
Example	Specify Initial Delay
	Set the initial delay on a counter output channel to 3 .
	Create a session and add a counter input channel.
	s=daq.createSession('ni'); ch=addCounterOutputChannel(s,'cDAQ1Mod5', 'ctrO', 'PulseGeneration');
	Set the initial delay.
	ch.InitialDelay=3
	ch =
	Data acquisition counter output pulse generation channel 'ctrO' on device
	IdleState: Low InitialDelay: 3 Frequency: 100 DutyCycle: 0.5 Terminal: 'PFIO' Name: '' ID: 'ctrO' Device: [1x1 daq.ni.CompactDAQModule] MeasurementType: 'PulseGeneration'

See Also addCounterOutputChannel

InitialCount

```
Purpose
                     Specify initial count point
Description
                     When working with the session-based interface, use the InitialCount
                     property to set the point from which the device starts the counter.
Values
Examples
                     Create a session object, add counter input channel, and change the
                     InitialCount.
                     s=daq.createSession('ni');
                     ch=addCounterInputChannel(s,'cDAQ1Mod5', 0, 'EdgeCount')
                     ch =
                     Data acquisition counter input edge count channel 'ctr0' on device 'cDAQ1Mod5':
                          ActiveEdge: Rising
                      CountDirection: Increment
                        InitialCount: 0
                            Terminal: 'PFI8'
                               Name: empty
                                 ID: 'ctr0'
                             Device: [1x1 daq.ni.DeviceInfo]
                      MeasurementType: 'EdgeCount'
                     Change InitalCount to 15:
                     ch.InitialCount=15
                     ch =
                     Data acquisition counter input edge count channel 'ctr0' on device 'cl
                            ActiveEdge: Rising
                        CountDirection: Increment
                          InitialCount: 15
```

Terminal: 'PFI8' Name: empty ID: 'ctr0' Device: [1x1 daq.ni.DeviceInfo] MeasurementType: 'EdgeCount'

See Also addCounterInputChannel

Purpose Description		ger e legacy interface on 64–bit MATLAB. See ' to acquire and generate data.	
	For all trigger types, Ini	tialTriggerTime records the time when t to On. The absolute time is recorded as a	
	You can return the InitialTriggerTime value with the getdata function, or with the Data.AbsTime field of the EventLog property.		
	If you synchronize multiple analoginput and analogoutput objects by setting TriggerType to HwDigitalTrigger and use the same digital trigger signal for all of the subsystems, the InitialTriggerTime property will not show the exact identical time for all subsystems.		
	Although the actual trigger events occurred simultaneously across all subsystems, the InitialTriggerTime events are recorded serially on a single thread. This causes the discrepancy of a few milliseconds. The time difference between InitialTriggerTime for multiple Data Acquisition Toolbox objects will not be consistent due to operating system process scheduling algorithms.		
Characteristics	Usage	AI, AO, common to all channels	
	Access	Read-only	
	Data type	Six-element vector of doubles	
	Read-only when running	N/A	
Values	The value is automaticall default value is a vector o	y updated when the trigger executes. The of zeros.	

InitialTriggerTime

Examples Create the analog input object ai for a sound card and add two hardware channels to it.

```
ai = analoginput('winsound');
chans = addchannel(ai,1:2);
```

After starting **ai**, the trigger immediately executes and the trigger time is recorded.

To convert the clock vector to a more convenient form:

```
t = fix(abstime);
sprintf('%d:%d:%d', t(4),t(5),t(6))
ans =
13:26:20
```

See Also Functions

getdata

Properties

EventLog, Logging, Sending

Purpose Specify callback function to execute when acquired data exceeds valid hardware range

Description

Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.

An input overrange event is generated immediately after an overrange condition is detected for any channel group member. This event executes the callback function specified for InputOverRangeFcn.

An overrange condition occurs when an input signal exceeds the range specified by the SensorRange property. Overrange detection is enabled only if the analog input object is running and a callback function is specified for InputOverRangeFcn.

Input overrange event information is stored in the Type and Data fields of the EventLog property. The Type field value is OverRange. The Data field values are given below.

Note The input overrange event is not generated if a signal begins outside the range and then goes into the range.

Data Field Value	Description
AbsTime	The absolute time (as a clock vector) the event occurred.
Channel	The index of the channel that experienced an overrange signal.

Data Field Value	Description
OverRange	The OverRange value, Off indicates that the channel went from overrange to in range, and On indicates that it went from in range to overrange.
RelSample	The acquired sample immediately before the moment when the overrange transition occurs.

Note The input signal values will not exceed the values set by the InputRange property. If you set InputRange and SensorRange to the same value, the OverRange event is never received. To receive OverRange events set the value of SensorRange within, and not equal to, the InputRange value.

Characteristics	Usage	AI, common to all channels
	Access	Read/write
	Data type	String
	Read-only when running	No
Values	The default value is an er	npty string.
See Also	Properties	

EventLog, SensorRange

Purpose Specify range of analog input subsystem

Description

Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.

InputRange is a two-element vector that specifies the range of voltages that can be accepted by the analog input (AI) subsystem. You should configure InputRange so that the maximum dynamic range of your hardware is utilized.

If an input signal exceeds the InputRange value, then an overrange condition occurs. Overrange detection is enabled only if the analog input object is running and a value is specified for the InputOverRangeFcn property. For many devices, the input range is expressed in terms of the gain and polarity.

AI subsystems have a finite number of InputRange values that you can set. If an input range is specified but does not match a valid range, then the next highest supported range is automatically selected by the engine. If InputRange exceeds the range of valid values, then an error is returned. Use the daqhwinfo function to return the input ranges supported by your board.

Because the engine can set the input range to a value that differs from the value you specify, you should return the actual input range for each channel using the get function or the device object display summary. Alternatively, you can use the setverify function, which sets the InputRange value and then returns the actual value that is set.

Note If your hardware supports a channel gain list, then you can configure InputRange for individual channels. Otherwise, InputRange must have the same value for all channels contained by the analog input object.

You should use InputRange in conjunction with the SensorRange property. These two properties should be configured such that the maximum precision is obtained and the full dynamic range of the sensor signal is covered.

Characteristics	Usage		AI, per channel
	Access		Read/write
	Data type		Two-element vector of doubles
	Read-only w running	hen	Yes
Values	The default v	alue is supp	lied by the hardware driver.
Examples	Create the an add two hard		bject ai for a National Instruments board, and els to it.
	ai = analoginput('nidaq','Dev1'); addchannel(ai,0:1);		
	You can return the input ranges supported by the board with the InputRanges field of the daqhwinfo function.		
	out = daqhw: out.InputRam	. , ,	
	ans = -0.0500 -0.5000	0.0500 0.5000	
	-5.0000 -10.0000	5.0000 10.0000	
	To configuro l	both channa	le contained by ai to accont input signals

To configure both channels contained by ai to accept input signals between -10 volts and 10 volts:

```
ai.Channel.InputRange = [-10 10];
```

Some devices allow you to set each channel's ${\tt InputRange}$ property independently:

```
ai.Channel(1).InputRange = [-0.05 0.05];
ai.Channel(2).InputRange = [-10 10];
```

Alternatively, you can use the setverify function.

ActualRange = setverify(ai.Channel, 'InputRange',[-10 10]);

See Also Functions

daqhwinfo, setverify

Properties

InputOverRangeFcn, SensorRange, Units, UnitsRange

InputType

Purpose	Specify analog input hardware channel configuration	
Description	For National Instruments devices, InputType can be SingleEnded, Differential, NonReferencedSingleEnded, or PseudoDifferential. For Measurement Computing devices, InputType can be SingleEnded, or Differential. For sound cards, InputType can only be AC-Coupled.	
	If channels have been added to a National Instruments or Measurement Computing analog input object and you change the InputType value, then the channels are automatically deleted if the hardware reduces the number of available channels.	
Characteristics	Usage	AI, common to all channels
	Access	Read/write
	Data type	String
	Read-only when Yes running	
Values	Advantech and Measurement Computing	
	Differential	Channels are configured for differential input.
	SingleEnded	Channels are configured for single-ended input.
	The value for InputType on Advantech and MCC boards is always	

The value for InputType on Advantech and MCC boards is always read-only in MATLAB. For Advantech boards, the setting is made in the Advantech Device Manager. For Measurement Computing boards, the setting is made in InstaCal.

InputType

National Instruments

{Differential}	Channels are configured for differential input.
SingleEnded	Channels are configured for single-ended input.
NonReferencedSingleEnded	This channel configuration is used when the input signal has its own ground reference, which is tied to the negative input of the instrumentation amplifier.
PseudoDifferential	Channels are configured for pseudodifferential input, which are all referred to a common ground but this ground is not connected to the computer ground.

Sound Cards

{AC-Coupled}	The input is coupled so that constant (DC)
	signal levels are suppressed.

IsContinuous

Purpose	Specify if operation continues until manually stopped				
Description	When working with the session-based interface, use IsContinuous to specify that the session operation runs until you execute stop. When set to true, the session will run continuously, acquiring or generating data until stopped.				
Values	<pre>{false} Set the IsContinuous property to false to make the session operation stop automatically. This property is set to false by default.</pre>				
	true Set the IsContinuous property to true to make the session operation run until you execute stop.				
Examples	<pre>Create a session object, add an analog input channel, and set the session to run until manually stopped: s = daq.createSession('ni'); addAnalogInputChannel(s,'cDAQ1Mod1','ai0','voltage'); s.IsContinuous = true s =</pre>				
	Data acquisition session using National Instruments hardware: Will run continuously at 1000 scans/second until stopped. Operation starts immediately. Number of channels: 1 index Type Device Channel InputType Range Name 				
See Also	Properties				
	IsDone				

Functions

stop,startBackground

IsDone

Purpose	Indicate if operation is complete				
Description	When working with the session-based interface, the read-only IsDone property indicates if the session operation is complete.				
	Tip IsDone indicates if the session object has completed acquiring or generating data. IsRunning indicates if the operation is in progress, but the hardware may not be acquiring or generating data. IsLogging indicates that the hardware is acquiring or generating data.				
Values	true Value is true if the operation is complete.				
	false Value is false if the operation is not complete.				
Examples	Create an acquisition session and see if the operation is complete:				
	<pre>s = daq.createSession('ni'); addAnalogOutputChannel(s,'cDAQ1Mod2', 'ao1', 'vVoltage'); s.queueOutputData (linspace(-1, 1, 1000)'); s.startBackground(); s.IsDone</pre>				
	ans =				
	0				
	Issue a wait and see if the operation is complete:				
	wait(s) s.IsDone				
	ans =				

1

See Also startBackground

IsLogging

Purpose	Indicate if hardware is acquiring or generating data				
Description	When working with the session-based interface, the status of the read-only IsLogging property indicates if the hardware is acquiring or generating data.				
	Tip IsLogging indicates that the hardware is acquiring or generating data. IsRunning indicates if the operation is in progress, but the hardware may not be acquiring or generating data. IsDone indicates if the session object has completed acquiring or generating data.				
Values	true Value is true if the device is acquiring or generating data. false				
	Value is false if the device is not acquiring or generating data.				
Examples	Create a session and see if the operation is logging:				
	<pre>s = daq.createSession('ni'); addAnalogOutputChannel(s,'cDAQ1Mod2', 'ao1', 'Voltage'); s.queueOutputData (linspace(-1, 1, 1000)'); startBackground(s); s.IsLogging</pre>				
	ans =				
	1				
	Wait until the operation is complete:				
	wait(s) s.IsLogging				
	ans =				

0

Properties

See Also

IsRunning, IsDone

Functions

startBackground

IsNotifyWhenDataAvailableExceedsAuto

Purpose	$Control\ if\ {\tt Notify} {\tt WhenDataAvailableExceeds}\ is\ set\ automatically$				
Description	When working with the session-based interface, the IsNotifyWhenDataAvailableExceedsAuto property indicates if the NotifyWhenDataAvailableExceeds property is set automatically, or you have set a specific value.				
	Tip This property is typically used to set NotifyWhenDataAvailableExceeds back to its default behavior.				
Values	{true} When the value is true, then the NotifyWhenDataAvailableExceeds property is set automatically.				
	false When the value is false, when you have set the NotifyWhenDataAvailableExceeds property to a specific value.				
Example	Enable Data Exceeds Notification				
	Change the IsNotifyWhenDataAvailableExceedsAuto to be able to set the NotifyWhenDataAvailableExceeds property to a specific value.				
	Create a session and display the properties by clicking the Properties link.				
	s=daq.createSession('ni')				
	S =				
	Data acquisition session using National Instruments hardware: Will run for 1 second (1000 scans) at 1000 scans/second. No channels have been added.				
	Properties, Methods, Events				

	AutoSyncDSA: NumberOfScans: DurationInSeconds: Rate: IsContinuous: NotifyWhenDataAvailableExceeds IsNotifyWhenDataAvailableExceedsAuto: NotifyWhenScansQueuedBelowAuto: IsNotifyWhenScansQueuedBelowAuto: ExternalTriggerTimeout: TriggersPerRun: Vendor: Channels: Connections: IsRunning: IsLogging: IsDone: IsWaitingForExternalTrigger: RateLimit: ScansQueued: ScansQueued:	1000 1 1000 false 100 true 500 true 10 1 National Instruments '' '' false false false false 1 '' 0 0 0 0 0 0 0 0 0 0 0 0 0	>
--	--	---	---

$Change the \verb"IsNotifyWhenDataAvailableExceedsAuto" to$

s.IsNotifyWhenDataAvailableExceedsAuto=false

s =

Data acquisition session using National Instruments hardware: Will run for 1 second (1000 scans) at 1000 scans/second. No channels have been added.

See Also Properties

NotifyWhenDataAvailableExceeds

IsNotifyWhenDataAvailableExceedsAuto

Events

DataAvailable

Purpose	$Control \ if \ {\tt Notify} \\ {\tt WhenScansQueuedBelow} \ is \ set \ automatically$				
Description	When working with the session-based interface, the IsNotifyWhenScansQueuedBelowAuto property indicates if the NotifyWhenScansQueuedBelow property is set automatically, or you have set a specific value.				
Values	{true} When the value is true, then NotifyWhenScansQueuedBelow is set automatically.				
	<pre>false When the value is false, you have set NotifyWhenScansQueuedBelow property to a specific value.</pre>				
Example	Enable Notification When Scans Reach Below Specified Range				
	Change the IsNotifyWhenScansQueuedBelowAuto to be able to set the NotifyWhenScansQueuedBelow property to a specific value.				
	Create a session and display the properties by clicking the Propertie link.				
	s=daq.createSession('ni')				
	S =				
	Data acquisition session using National Instruments hardware: Will run for 1 second (1000 scans) at 1000 scans/second. No channels have been added.				
	Properties, Methods, Events				
	AutoSyncDSA: false NumberOfScans: 1000 DurationInSeconds: 1 Rate: 1000				

IsNotifyWhenScansQueuedBelowAuto

IsContinuous: false NotifyWhenDataAvailableExceeds: 100 IsNotifyWhenDataAvailableExceedsAuto: true NotifyWhenScansQueuedBelow: 500 IsNotifyWhenScansQueuedBelowAuto: true ExternalTriggerTimeout: 10 TriggersPerRun: 1 Vendor: National Instruments Channels: '' Connections: '' IsRunning: false IsLogging: false IsDone: false IsWaitingForExternalTrigger: false TriggersRemaining: 1 RateLimit: '' ScansQueued: 0 ScansOutputByHardware: 0 ScansAcquired: 0

 $Change \ the \ {\tt IsNotify} \\ {\tt WhenDataAvailableExceedsAuto} \ to$

s.IsNotifyWhenScansQueuedBelowAuto=false

s =

Data acquisition session using National Instruments hardware: Will run for 1 second (1000 scans) at 1000 scans/second. No channels have been added.

See Also Properties

NotifyWhenScansQueuedBelow, ScansQueued

Events

DataRequired

Purpose	Indicate if operation is still in progress				
Description	When working with the session-based interface, the IsRunning status indicates if the operation is still in progress.				
	Tip IsRunning indicates if the operation is in progress, but the hardware may not be acquiring or generating data. IsLogging indicates that the hardware is acquiring or generating data. IsDone indicate is if the session object has completed acquiring or generating.				
Values	true When the value is true if the operation is in progress. false When the value is false if the operation is not in progress.				
Examples	Create an acquisition session, add a DataAvailable event listener and start the acquisition.				
	s = daq.createSession('ni'); addAnalogInputChannel(s,'cDAQ1Mod1','aiO','voltage'); lh = s.addlistener('DataAvailable', @plotData);				
	<pre>function plotData(src,event)</pre>				
	<pre>startBackground(s);</pre>				
	See if the session is in progress.				
	s.IsRunning				
	ans =				
	1				

Wait until operation completes and see if session is in progress:

wait(s) s.IsRunning

ans =

0

See Also Properties IsLogging, IsDone

Functions

startBackground

Purpose	Indicate if device is simulated					
Description		When working with the session-based interface, the IsSimulated property indicates if the session is using a simulated device.				
Values	true When the value is true if the operation is in progress. false					
	W	hen the	e value is f a	lse if the o	operation is no	t in progress.
Examples	Discover available devices. >> d = daq.getDevices					
	d =					
	Data acquisition devices:					
	index Vendor Device ID Description					
	1 n	ni	cDAQ1Mod1	National	Instruments	NI 9201
	2 n	ni	cDAQ2Mod1	National	Instruments	NI 9201
	3 n	ni	Dev1	National	Instruments	USB-6211
	4 n	ni	Dev2	National	Instruments	USB-6218
	-	ni	Dev3		Instruments	
	-	ni	Dev4		Instruments	
		ni			Instruments	
	8 n	ni	PX11510t3	National	Instruments	PX1-4461
	Examin	e prope	erties of NI S	9201, with	the device id c	DAQ1Mod1 with
	the index 1					

th the index 1.

>> d(1)

ans =

```
ni: National Instruments NI 9201 (Device ID: 'cDAQ1Mod1')
Analog input subsystem supports:
    -10 to +10 Volts range
    Rates from 0.1 to 800000.0 scans/sec
    8 channels ('ai0','ai1','ai2','ai3','ai4','ai5','ai6','ai7')
    'Voltage' measurement type
This module is in slot 4 of the 'cDAQ-9178' chassis with the name 'cDAQ1'
Properties, Methods, Events
Click the Properties link to see the properties of the device.
```

```
ChassisName: 'cDAQ1'

ChassisModel: 'cDAQ-9178'

SlotNumber: 4

IsSimulated: true

Terminals: [48x1 cell]

Vendor: National Instruments

ID: 'cDAQ1Mod1'

Model: 'NI 9201'

Subsystems: [1x1 daq.ni.AnalogInputInfo]

Description: 'National Instruments NI 9201'

RecognizedDevice: true
```

Note that the IsSimulated value is true, indicating that this device is simulated.

See Also Properties

IsLogging, IsDone

Functions

startBackground

Purpose	Indicates if synchronization is waiting for an external trigger
Description	When working with the session-based interface, the read-onlyIsWaitingForExternalTrigger property indicates if the acquisition or generation session is waiting for a trigger from an external device. If you have added an external trigger, this property displays true, if not, it displays false.
See Also	addTriggerConnection

Line

Purpose	Contain hardware lines added to device object			
Description	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.			
	Line is a vector of all the hardware lines contained by a digital I/O (DIO) object. Because a newly created DIO object does not contain hardware lines, Line is initially an empty vector. The size of Line increases as lines are added with the addline function, and decreases as lines are removed with the delete function.			
	You can use Line to reference one or more individual lines. To reference a line, you must know its MATLAB index and hardware ID. The MATLAB index is given by the Index property, while the hardware ID is given by the HwLine property.			
Characteristics	Usage	DIO		
	Access	Read/write		
	Data type	Vector of lines		
	Read-only when running	Yes		
Values	Values are automatically defined when lines are added to the DIO object with the addline function. The default value is an empty column vector.			
Examples	Create the digital I/O object dio and add four input lines to it.			
-	<pre>dio = digitalio('nidaq','Dev1'); addline(dio,0:3,'In'); To set a property value for the first line added (ID = 0), you can reference the line by its index using the Line property.</pre>			

line1 = dio.Line(1); set(line1,'Direction','Out')

See Also Functions

addline, delete

Properties

HwLine, Index

LineName

Purpose	Specify descriptive line name	
Description		e legacy interface on 64–bit MATLAB. See ' to acquire and generate data.
	LineName specifies a descriptive name for a hardware line. If a line name is defined, then you can reference that line by its name. If a line name is not defined, then the line must be referenced by its index. Line names are not required to be unique.	
You can also define descriptive line names when lines are digital I/O object with the addline function.		-
Characteristics	Usage	DIO, per line
	Access	Read/write
	Data type	String
	Read-only when running	Yes
Values	The default value is an empty string. To reference a line by name, it must contain only letters, numbers, and underscores and must begin with a letter.	
Examples	Create the digital I/O object dio and add four hardware lines to it.	
	dio = digitalio('nidaq','Dev1'); addline(dio,0:3,'out');	
	To assign a descriptive name to the first line contained by dio:	
	line1 = dio.Line(1); set(line1,'LineName','Joe')	

You can now reference this line by name instead of index.

set(dio.Joe,'Direction','In')

See Also Functions

addline

LogFileName

Purpose	Specify name of disk fi	le information is logged to
Description		the legacy interface on 64–bit MATLAB. See ace" to acquire and generate data.
	You can log acquired data, device object property values and event information, and hardware information to a disk file by setting the LoggingMode property to Disk or Disk&Memory.	
	You can specify any value for LogFileName as long as it conforms to the MATLAB software naming conventions: the name cannot start with a number and cannot contain spaces. If no extension is specified as part of LogFileName, then daq is used. The default value for LogFileName is logfile.daq.	
	log files are created w. LogToDiskMode to Ove Setting LogToDiskMod	er an output file is overwritten or if multiple ith the LogToDiskMode property. Setting rwrite causes the output file to be overwritten. e to Index causes new data files to be created, name based on the value of LogFileName.
Characteristics	Usage Access Data type Read-only when running	AI, common to all channels Read/write String Yes
Values	The default value is 10	ogfile.daq.
See Also	Properties Logging, LoggingMode	e, LogToDiskMode

Purpose Indicate whether data is being logged to memory or disk file **Description Note** You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data. Along with the Running property, Logging reflects the state of an analog input object. Logging can be On or Off. Logging is automatically set to On when a trigger occurs. When Logging is On, acquired data is being stored in memory or to a disk file. Logging is automatically set to Off when the requested samples are acquired, an error occurs, or a stop function is issued. When Logging is Off, you can still preview data with the peekdata function provided Running is On. However, peekdata does not guarantee that all the requested data is returned. To guarantee that acquired data contains no gaps, is must be logged to memory or to a disk file. Data stored in memory is extracted with the getdata function, while data stored to disk is returned with the dagread function. The destination for logged data is controlled with the LoggingMode property. **Characteristics** Usage AI, common to all channels Read-only Access Data type String Read-only when N/A running Values {0ff} Data is not logged to memory or a disk file. 0n Data is logged to memory or a disk file.

See Also Functions

daqread, getdata, peekdata, stop

Properties

LoggingMode, Running

PurposeSpecify destination for acquired data

Description

Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.

You can set LoggingMode to Disk, Memory, or Disk&Memory. When you set LoggingMode to Disk, then acquired data (as well as device object and hardware information) is streamed to a disk file. If LoggingMode is set to Memory, then acquired data is stored in the data acquisition engine. If LoggingMode is set to Disk&Memory, then acquired data is stored in the data acquisition engine and is streamed to a disk file.

When logging to the engine, you must extract the data with the getdata function. If you do not extract this data, and the amount of data stored in memory reaches the limit for the data acquisition object (see daqmem(obj)), a **DataMissed** event occurs. At this point, the acquisition stops.

When logging to disk, you can specify the log filename with the LogFileName property, and you can control the number of log files created with the LogToDiskMode property. You can return data stored in a disk file to the MATLAB workspace with the dagread function.

Characteristics Usage

Access Data type Read-only when running AI, common to all channels Read/write String Yes

LoggingMode

Values	Disk	Acquired data is logged to a disk file.
	{Memory}	Acquired data is logged to memory.
	Disk&Memory	Acquired data is logged to a disk file and to memory.
See Also	Functions	
	daqread, getdata	

Properties

LogFileName, LogToDiskMode

Purpose	Specify whether data, events, and hardware information are saved to one or more disk files		
Description	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
	LogToDiskMode can be set to Overwrite or Index. If LogToDiskMode is set to Overwrite, then the log file is overwritten each time start is issued. If LogToDiskMode is set to Index, a different disk file is created each time start is issued and these rules are followed:		
	• The first log filename is specified by the initial value of LogFileName.		
	• If the specified file already exists, it is overwritten and no warning is issued.		
	• LogFileName is automatically updated with a numeric identifier after each file is written. For example, if LogFileName is initially specified as data.daq, then data.daq is the first filename, data01.daq is the second filename, and so on.		
	return data stored in a d	bjects are logged to separate files. You can lisk file to the MATLAB workspace with the error occurs during data logging, an error data logging is stopped.	
Characteristics	Usage	AI, common to all channels	
	Access	Read/write	
	Data type	String	
	Read-only when running	Yes	

Values	Index	Multiple log files are written, each with an indexed filename based on the LogFileName property.
	{Overwrite}	The log file is overwritten.
See Also	Functions	
	daqread	
	Properties	
	LogFileName, LoggingM	ode

Purpose Specify hardware device starts at manual trigger

Description

Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.

You can set ManualTriggerHwOn to Start or Trigger, and it has an effect only when the TriggerType property value is Manual. If ManualTriggerHwOn is Start, then the hardware device associated with your device object starts running after you issue the start function. If ManualTriggerHwOn is Trigger, then the hardware device associated with your device object starts acquiring after you issue both the start function and you execute a manual trigger with the trigger function. You can use trigger only when you configure the TriggerType property to Manual.

You should configure ManualTriggerHwOn to Trigger when you want to synchronize the input and output of data, or you require more control over when your hardware starts. Note that you cannot use peekdata or acquire pretrigger data when you use this value. Additionally, you should not use this value with repeated triggers because the subsequent behavior is undefined.

Characteristics U_{sage}

Access Data type Read-only when running AI, common to all channels Read/write String Yes

ManualTriggerHwOn

Values	{Start} Trigger	Start the hardware after the start function is issued. Start the hardware after the trigger function is issued.
Examples	<pre>sound card and ai = analogin addchannel(ai ao = analogon addchannel(ad To operate the the time betwee ManualTriggen both ai and ac set([ai ao], ai.ManualTrig The analog inp after you issue</pre>	utput('winsound'); o,1:2); sound card in full duplex mode, and to minimize een when ai starts and ao starts, you configure rHwOn to Trigger for ai and TriggerType to Manual for
See Also	Functions peekdata, sta Properties	rt, trigger

TriggerType

Purpose	Indicate maximum nu	umber of samples that can be queued in engine	
Description	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
	MaxSamplesQueued indicates the maximum number of samples allowed in the analog output queue.		
	If the BufferingMode is set to Auto, the default value is calculated by the engine, and is based on the memory resources of your system. You can override the default value of MaxSamplesQueued with the daqmem function.		
indicate the maxim		is set to Manual, MaxSamplesQueued is updated to n number of samples allowed in the analog output umber of buffers selected in BufferingConfig.	
	The value of MaxSamplesQueued can affect the behavior of putdata. For example, if the queued data exceeds the value of MaxSamplesQueued, then putdata becomes a blocking function until there is enough space in the queue to add the additional data.		
Characteristics	Usage	AO, common to all channels	
	Access	Read-only	
	Data type	Double	
	Read-only when running	N/A	
Values	The value is calculate	d by the data acquisition engine.	
See Also	Functions		
	daqmem, putdata		
	Data type Read-only when running The value is calculate Functions	Double N/A	

Purpose	Sound pressure level for microphone channels		
Description	When working with the session-based interface, use the MaxSoundPressureLevel set the maximum sound pressure of the microphone channel in decibels.		
Values	The maximum sound pressure level is based on the sensitivity and the voltage range of your device. When you sent your device Sensitivity, the MaxSoundPressureLevel value is automatically corrected to match the specified sensitivity value and the device voltage range. You can also specify any acceptable pressure level in decibels. Refer to your microphone specifications for more information.		
Example	Change Maximum Sound Pressure of Microphone Change the Sensitivity of a microphone channel and set the maximum sound pressure level to 10.		
	Create a session and add a microphone channel.		
	s = daq.createSession('ni'); ch=addAnalogInputChannel(s,'cDAQ1Mod3', 0, 'Microphone')		
	ch =		
	Data acquisition analog input microphone channel 'aiO' on device 'cDAQ1Mo		
	Sensitivity: 'Unknown' MaxSoundPressureLevel: 'Unknown' ExcitationCurrent: 0.002 ExcitationSource: Internal Coupling: AC TerminalConfig: PseudoDifferential Range: -5.0 to +5.0 Volts Name: '' ID: 'ai0' Device: [1x1 daq.ni.CompactDAQModule] MeasurementType: 'Microphone'		

```
ADCTimingMode: ''
```

Set the channel's sensitivity to 3 0.037.

```
ch.Sensitivity=0.037
```

ch =

Data acquisition analog input microphone channel 'ai0' on device 'cDA

```
Sensitivity: 0.037
MaxSoundPressureLevel: 136
ExcitationCurrent: 0.002
ExcitationSource: Internal
Coupling: AC
TerminalConfig: PseudoDifferential
Range: -135 to +135 Pascals
Name: ''
ID: 'ai0'
Device: [1x1 daq.ni.CompactDAQModule]
MeasurementType: 'Microphone'
ADCTimingMode: ''
```

Set the channel's maximum sound pressure to 10 dbs.

```
ch.MaxSoundPressureLevel=10
```

ch =

Data acquisition analog input microphone channel 'ai0' on device 'cDA

```
Sensitivity: 0.037
MaxSoundPressureLevel: 10
ExcitationCurrent: 0.002
ExcitationSource: Internal
Coupling: AC
TerminalConfig: PseudoDifferential
Range: -135 to +135 Pascals
```

Name: '' ID: 'ai0' Device: [1x1 daq.ni.CompactDAQModule] MeasurementType: 'Microphone' ADCTimingMode: ''

Purpose	Channel measurement type
---------	--------------------------

Description When working with the session-based interface, the MeasurementType property displays the selected measurement type for your channel.

Values You can only use Audio measurement type with multichannel audio devices.

Counter measurement types include:

- 'EdgeCount' (input)
- 'PulseWidth' (input)
- 'Frequency'(input)
- 'Position'(input)
- 'PulseGeneration' (output)

Analog measurement types include:

- 'Voltage' (input and output)
- 'Thermocouple' (input)
- 'Current' (input and output)
- 'Accelerometer' (input)
- 'RTD' (input)
- 'Bridge' (input)
- 'Microphone' (input)
- 'IEPE' (input)
- **Examples** Create a session object, add a counter input channel, with the 'EdgeCount' MeasurementType.

```
s=daq.createSession('ni');
ch=addCounterInputChannel (s,'cDAQ1Mod5', 0, 'EdgeCount')
```

```
ch =
Data acquisition counter input edge count channel 'ctr0' on device 'cDAQ1Mod5':
ActiveEdge: Rising
CountDirection: Increment
InitialCount: 0
Terminal: 'PFI8'
Name: empty
ID: 'ctr0'
Device: [1x1 daq.ni.DeviceInfo]
MeasurementType: 'EdgeCount'
See Also
addAnalogInputChannel, addAnalogOutputChannel,
addCounterInputChannel, addCounterOutputChannel,
```

Purpose	Specify descriptive name for the channel Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
Description			
	When you add a channel, a descriptive name is automatically generated and stored in Name. The name is a concatenation the name of the adaptor, the device ID, and the device object type. You can change the value of Name at any time.		
Values	The value is defined when you add the channel.		
Examples	Create the analog input object ai for a sound card.		
	<pre>ai = analoginput('winsound');</pre>		
	The descriptive name for ai is given by		
	ai.Name		
	ans = winsound0-AI		
	Change the name to WindowsSoundChannel and access the name		
ai.Name='WindowsSoundChannel'			

Name

```
Purpose
                  Specify descriptive name for the channel
Description
                  When you add a channel, a descriptive name is stored in Name. By
                  default there is no name assigned to the channel. You can change the
                  value of Name at any time.
Values
                  You can specify a string value for the name.
Examples
                  Change the name of an analog input channel
                  Create a session and add an analog input channel.
                  s=daq.createSession('ni');
                  ch=addAnalogInputChannel(s,'Dev1', 0, 'Voltage')
                  ch =
                  Data acquisition analog input voltage channel 'ai0' on device 'Dev1':
                         Coupling: DC
                   TerminalConfig: Differential
                            Range: -10 to +10 Volts
                             Name: ''
                                ID: 'ai0'
                           Device: [1x1 daq.ni.DeviceInfo]
                  MeasurementType: 'Voltage'
                  Change Name to 'AI-Voltage'.
                  ch.Name='AI-Voltage'
                  ch =
                  Data acquisition analog input voltage channel 'ai0' on device 'Dev1':
                         Coupling: DC
                   TerminalConfig: Differential
                             Range: -10 to +10 Volts
```

Name: 'AI-Voltage' ID: 'ai0' Device: [1x1 daq.ni.DeviceInfo] MeasurementType: 'Voltage'

See Also addAnalogInputChannel

NativeOffset

Purpose	Indicate offset to use when converting between native data format and doubles		
Description	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
		vith NativeScaling, is used to convert data rdware format and doubles.	
	For analog input objects, you return native data from the engine with the getdata function. Additionally, if you log native data to a .daq file, then you can read back that data using the daqread function. The formula for converting from native data to doubles is		
	doubles data = (native data)(native scaling) + native offset		
	For analog output objects, you queue native data in the engine with the putdata function. The formula for converting from doubles to native data is		
	native data = (doubles	data)(native scaling) + native offset	
	You return the native data type of your hardware device with the daqhwinfo function. Note that the NativeScaling value for a given channel might change if you change its InputRange (AI) or OutputRange (AO) property value.		
	You might want to return or queue data in native format to conserve memory and to increase data acquisition or data output speed.		
Characteristics	Usage	AI, AO, per channel	
	Access	Read-only	

	Data type	Double	
	Read-only when running	N/A	
Values	The default value is device-specific.		
Examples	Create the analog input object ai for a National Instruments board and add eight channels to it.		
	ai = analoginput('r addchannel(ai,0:7);		
	-	econd of data for each channel, and extract the using the native format of the device.	
	start(ai) nativedata = getdata(ai,1000,'native'); You can return the native data type of the board with the function.		
	out = daqhwinfo(ai) out.NativeDataType ans = double	;	
	Convert the data to doubles using the NativeScaling and NativeOffset properties.		
	offset = get(ai.Cha	nannel(1),'NativeScaling'); annel(1),'NativeOffset'); /edata)*scaling + offset;	
See Also	Functions		
	daqhwinfo, daqread, g	getdata, putdata	

Properties

InputRange, NativeScaling, OutputRange

Purpose	Indicate scaling to use when converting between native data format and doubles			
Description	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.			
	NativeScaling, along with NativeOffset, is used to convert data between the native hardware format and doubles.			
	For analog input objects, you return native data from the engine with the getdata function. Additionally, if you log native data to a .daq file, then you can read back that data using the daqread function. The formula for converting from native data to doubles is			
	doubles data = (native data)(native scaling) + native offset			
	For analog output objects, you queue native data in the engine with the putdata function. The formula for converting from doubles to native data is			
	native data = (doubles data)(native scaling) + native offset			
	You return the native data type of your hardware device with the daqhwinfo function. Note that the NativeScaling value for a given channel might change if you change its InputRange (AI) or OutputRange (AO) property value.			
	You might want to return or queue data in native format to conserve memory and to increase data acquisition or data output speed.			
Characteristics	Usage	AI, AO, per channel		
	Access	Read-only		

	Data type	Double	
	Read-only when running	N/A	
Values	The default value is device-specific.		
See Also	Functions		
	daqhwinfo, daqread, getdata, putdata		
	••••	gotuatu, patuatu	
	Properties	go cua ca, pa cua ca	

Purpose	Resistance of sensor
Description	When working with the session-based interface, the NominalBridgeResistance property displays the resistance of a bridge-based sensor in ohms. This value is used to calculate voltage.
	You can specify any accepted positive value in ohms. The default value is 0 until you change it. You must set the resistance to use the channel.
See Also	addAnalogInputChannel

NotifyWhenDataAvailableExceeds

Purpose	Control firing of DataAvailable event		
Description	When working with the session-based interface the DataAvailable event is fired when the scans available to the session object exceeds the value specified in the NotifyWhenDataAvailableExceeds property.		
Values	By default the DataAvailable event fires when 1/10 second worth of data is available for analysis. To specify a different threshold change this property to control when DataAvailable fires.		
Examples	Control Firing of Data Available Event		
	Add an event listener to display the total number of scans acquired and fire the event when the data available exceeds specified amount.		
	Create the session and add an analog input voltage channel.		
	<pre>s=daq.createSession('ni'); addAnalogInputChannel(s,'Dev4', 1, 'Voltage'); lh=addlistener(s,'DataAvailable', @(src, event) disp(s.ScansAcquired));</pre>		
	The default the Rate is 1000 scans per second. The session is automatically configured to fire the DataAvailable notification 10 times per second.		
	Increase the Rate to 800,000 scans per second and the DataAvailable notification automatically fires 10 times per second.		
	s.Rate=800000; s.NotifyWhenDataAvailableExceeds		
	ans = 80000		
	Running the acquisition causes the number of scans acquired to be displayed by the callback 10 times.		

data=startForeground(s);

Increase NotifyWhenDataAvailableExceeds to 160,000. NotifyWhenDataAvailableExceeds is no longer configured automatically when the Rate changes.

s.NotifyWhenDataAvailableExceeds = 160000; s.IsNotifyWhenDataAvailableExceedsAuto

ans =

0

Start the acquisition. The DataAvailable event is fired only five times per second.

data=startForeground(s);

 $Set \ \texttt{IsNotify} \\ \texttt{WhenDataAvailableExceedsAuto } back \ to \ \texttt{true}.$

s.IsNotifyWhenDataAvailableExceedsAuto=true; s.NotifyWhenDataAvailableExceeds

ans =

80000

This causes NotifyWhenDataAvailableExceeds to set automatically when Rate changes.

s.Rate = 50000; s.NotifyWhenDataAvailableExceeds

ans =

5000

See Also Properties

IsNotifyWhenDataAvailableExceedsAuto

Events

DataAvailable

Functions

addListener, startBackground

	Purpose	Control firing of DataRequired event
--	---------	--------------------------------------

Description When working with the session-based interface to generate output signals continuously, the DataRequired event is fired when you need to queue more data. This occurs when the ScansQueued property drops below the value specified in the NotifyWhenScansQueuedBelow property.

Values By default the DataRequired event fires when 1/2 second worth of data remains in the queue. To specify a different threshold, change the this property to control when DataRequired is fired.

Example Control When DataRequired Event is Fired

Specify a threshold below which the DataRequired event fires.

Create a session and add an analog output channel.

s=daq.createSession('ni')
addAnalogOutputChannel(s,'cDAQ1Mod2', 0, 'Voltage')

Queue some output data.

```
outputData=(linspace(-1, 1, 1000))';
s.queueOutputData(outputData);
```

Set the threshold of scans queued to 100.

s.NotifyWhenScansQueuedBelow=100;

Add an anonymous listener and generate the signal in the background:

```
lh = s.addlistener('DataRequired', ...
@(src,event) src.queueOutputData(outputData));
```

startBackground(s);

NotifyWhenScansQueuedBelow

See Also

Properties

ScansQueued, IsNotifyWhenScansQueuedBelowAuto

Events

DataRequired

Purpose Number of scans for operation when starting

Description When working with the session-based interface, use the NumberOfScans property to specify the number of scans the session will acquire during the operation. Changing the number of scans changes the duration of an acquisition. When the session contains output channels, NumberOfScans becomes a read only property and the number of scans in a session is determined by the amount of data queued.

Tips

- To specify length of the acquisition, use DurationInSeconds.
- To control length of the output operation, use queueOutputData.

Values You can change the value only when you use input channels.

Example Change Number of Scans

Create an acquisition session, add an analog input channel, and display the NumberOfScans.

```
s=daq.createSession('ni');
addAnalogInputChannel(s,'cDAQ1Mod1','ai0','Voltage');
s.NumberOfScans
```

ans =

1000

Change the NumberOfScans property.

s.NumberOfScans=2000

s =

Data acquisition session using National Instruments hardware: Will run for 2000 scans (2 seconds) at 1000 scans/second. Operation starts immediately. Number of channels: 1 index Type Device Channel InputType Range Name 1 ai cDAQ1Mod1 ai0 Diff -10 to +10 Volts

See Also Properties

ScansQueued, DurationInSeconds

Functions

startForeground, startBackground, queueOutputData

Purpose Specify range of analog output hardware subsystem

Description

Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.

OutputRange is a two-element vector that specifies the range of voltages that can be output by the analog output (AO) subsystem. You should configure OutputRange so that the maximum dynamic range of your hardware is utilized. For many devices, the output range is expressed in terms of the gain and polarity.

AO subsystems have a finite number of OutputRange values that you can set. If an output range is specified but does not match a valid range, then the next highest supported range is automatically selected by the engine. If OutputRange exceeds the range of valid values, then an error is returned. Use the daqhwinfo function to return the output ranges supported by your board.

Because the engine can set the output range to a value that differs from the value you specify, you should return the actual output range for each channel using the get function or the device object display summary. Alternatively, you can use the setverify function, which sets the OutputRange value and then returns the actual value that is set.

Characteristics	Usage	AO, per channel
	Access	Read/write
	Data type	Two-element vector of doubles
	Read-only when running	Yes
Values	The default value is determined by the hardware driver.	

OutputRange

Examples Create the analog output object **ao** for a National Instruments board and add two hardware channels to it.

```
ao = analogoutput('nidaq','Dev1');
addchannel(ao,0:1);
```

You can return the output ranges supported by the board with the OutputRanges field of the daqhwinfo function.

To configure both channels contained by **ao** to output signals between -10 volts and 10 volts:

ao.Channel.OutputRange = [-10 10];

Alternatively, you can use the setverify function to configure and return the OutputRange value.

ActualRange = setverify(ao.Channel, 'OutputRange',[-10 10]);

See Also Functions

daqhwinfo, setverify

Properties

Units, UnitsRange

Purpose	Indicate parent (device object) of channel or line		
Description	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
	The parent of a chann contains the channel (el (line) is defined as the device object that line).	
	You can create a copy of the device object containing a particular channel or line by returning the value of Parent. You can treat this copy like any other device object. For example, you can configure property values, add channels or lines to it, and so on.		
Characteristics	CS Usage AI, AO, per channel; DIO, per line		
	Access	Read-only	
	Data type	Device object	
	Read-only when running	N/A	
Values	The value is defined when channels or lines are added to the device object.		
Examples	Create the analog input object ai for a National Instruments board and add three hardware channels to it.		
	ai = analoginput('nidaq','Dev1'); chans = addchannel(ai,0:2);		
	To return the parent f	or channel 2:	
	parent = ai.Channel(2).Parent;		
	parent is an exact copy of ai.		

Parent

isequal(ai,parent) ans = 1

Purpose	Specify port ID		
Description	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
	Hardware lines are often grouped together as a port. Digital I/O subsystems can consist of multiple ports and typically have eight lines per port. When adding hardware lines to a digital I/O object with addline, you can specify the port ID. The port ID is stored in the Port property. If the port ID is not specified, then the smallest port ID value is automatically used.		
Characteristics	Usage Access	DIO, per line Read-only	
	Data type	Double	
	Read-only when running	N/A	
Values	The port ID is defined with addline.	d when line are added to the digital I/O object	
Examples	Create the digital I/O	object dio and add two hardware channels to it.	
	dio = digitalio('nidaq','Dev1'); addline(dio,0:1,'In');		
	You can use Port property to return the port IDs associated with the lines contained by dio.		
	dio.Line.Port ans = [0]		

[0]

See Also Functions

addline

Purpose Specify resistance value

Description Use this property to specify the resistance of the device.

You can specify any acceptable value in ohms. When you add an RTD Channel, the resistance is unknown and the RO property displays Unknown. You must change this value to set the resistance of this device to the temperature you want.

Example Set RTD Channels Resistance

Create a session and add an RTD channel.

```
s = daq.createSession('ni');
ch=addAnalogInputChannel(s,'cDAQ1Mod7',3, 'RTD');
```

Change the channels resistance to 100°C.

```
ch.R0=100
```

ch =

Data acquisition analog input RTD channel 'ai3' on device 'cDAQ1Mod7'

```
Units: Celsius

RTDType: Unknown

RTDConfiguration: Unknown

R0: 100

ExcitationCurrent: 0.0005

ExcitationSource: Internal

Coupling: DC

TerminalConfig: Differential

Range: -200 to +660 Celsius

Name: ''

ID: 'ai3'

Device: [1x1 daq.ni.CompactDAQModule]

MeasurementType: 'RTD'

ADCTimingMode: HighResolution
```

See Also

Properties

RTDConfiguration, RTDType

Purpose	Specify channel measurement range		
Description	When working with the session-based interface, use the Range to indicate the measurement range of a channel.		
Values	Range is not applicable for counter channels. For analog channels, value is dependent on the measurement type. This property is read-only for all measurement types except 'Voltage'. You can specify a range in volts for analog channels.		
Example	Specify Voltage Channel Range Specify the range of an analog input voltage channel.		
	Create a session and add an analog input channel.		
	<pre>s=daq.createSession('ni'); ch=addAnalogInputChannel(s,'cDAQ1Mod7',3,'voltage'); Set the range to —60 to +60 volts.</pre>		
	ch.Range=[-60,60];		
See Also	daq.createSession,addAnalogInputChannel		

Rate

Purpose	Rate of operation in scans per second		
Description	When working with the session-based interface, use the Rate property to set the number of scans per second.		
	Note Many hardware devices accept fractional rates.		
	Tip On most devices, the hardware limits the exact rates that you can set. When you set the rate, Data Acquisition Toolbox sets the rate to the next higher rate supported by the hardware. If the exact rate affects your analysis of the acquired data, obtain the actual rate after you set it, and then use that in your analysis.		
Values	You can set the rate to any positive nonzero scalar value supported by the hardware in its current configuration.		
Examples	Change Session Rate		
	Create a session and add an analog input channel.		
	s=daq.createSession('ni'); addAnalogInputChannel(s,'cDAQ1Mod1','ai1','Voltage');		
	Change the rate to 10000.		
	s.Rate = 10000		
	s =		
	Data acquisition session using National Instruments hardware: Will run for 1 second (10000 scans) at 10000 scans/second. Operation starts immediately. Number of channels: 1		

index Type Device Channel InputType Range Name 1 ai cDAQ1Mod1 ai1 Diff -10 to +10 Volts Properties, Methods, Events See Also Properties

DurationInSeconds, NumberOfScans, RateLimit

RateLimit

Purpose	Limit of rate of operation based on hardware configuration		
Description	In the session-based interface, the read-only RateLimit property displays the minimum and maximum rates that the session supports, based on the device configuration for the session.		
	Tip RateLimit changes dynamically as the session configuration changes.		
Example	Display Sessions Rate Limit		
	Create session and add an analog input channel.		
	s = daq.createSession('ni'); addAnalogInputChannel(s,'cDAQ1Mod1','ai1','Voltage');		
	Examine the session's rate limit.		
	s.RateLimit		
	ans =		
	1.0e+05 *		
	0.0000 2.5000		
See Also	Properties		
	Rate		

_			
Purpose	Specify number of add	litional times queued data is output	
Description	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
	To send data to an analog output subsystem, it must first be queued in the data acquisition engine with the putdata function. If you want to continuously output the same data, you can use multiple calls to putdata. However, because each putdata call consumes memory, a long output sequence can quickly bring your system to halt. As an alternative to putdata, you can continuously output previously queued data using RepeatOutput. Because RepeatOutput requeues the data, additional memory resources are not consumed. While the data is being output, you cannot add additional data to the queue.		
Characteristics	Usage	AO, common to all channels	
	Access	Read/write	
	Data type	Double	
	Read-only when running	Yes	
Values	The default value is z	ero.	
Examples	Create the analog output object ao for a sound card and add one channe to it. ao = analogoutput('winsound'); chans = addchannel(ao,1);		
	To queue one second o	of data:	
	data = sin(linspac		
	aata oin(iinopuo	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

RepeatOutput

See Also

putdata(ao,data) To continuously output data for 10 seconds: set(ao,'RepeatOutput',9) **Functions** putdata

Purpose Specify wiring configuration of RTD device

Description Use this property to specify the wiring configuration for measuring resistance.

When you create an RTD channel, the wiring configuration is unknown and the RTDConfiguration property displays Unknown. You must change this to one of the following valid configurations:

- TwoWire
- ThreeWire
- FourWire

Example Specify Channel's RTD Configuration

Specify an RTD channels wiring configuration.

Create a session and add an RTD channel to it.

```
s = daq.createSession('ni');
ch=addAnalogInputChannel(s,'cDAQ1Mod7',3, 'RTD');
```

Change the RTDConfiguration to ThreeWire.

```
ch.RTDConfiguration='ThreeWire'
```

ch =

Data acquisition analog input RTD channel 'ai3' on device 'cDAQ1Mod7'

```
Units: Celsius
RTDType: Unknown
RTDConfiguration: ThreeWire
RO: 'Unknown'
ExcitationCurrent: 0.0005
ExcitationSource: Internal
Coupling: DC
TerminalConfig: Differential
```

Range: -200 to +660 Celsius Name: '' ID: 'ai3' Device: [1x1 daq.ni.CompactDAQModule] MeasurementType: 'RTD' ADCTimingMode: HighResolution

See Also

Properties R0, RTDType

Purpose Specify sensor sensitivity

Description Use this property to specify the sensitivity of a standard RTD sensor in the session-based interface. A standard RTD sensor is defined as a 100–ohm platinum sensor.

When you create an RTD channel, the sensitivity is unknown and the RTDType property displays Unknown. You must change this to one of these valid values:

- Pt3750
- Pt3851
- Pt3911
- Pt3916
- Pt3920
- Pt3928

Example Set RTD Sensor Type

Set an RTD sensor's sensitivity type.

Create a session and add an RTD channel.

```
s = daq.createSession('ni');
ch=addAnalogInputChannel(s,'cDAQ1Mod7',3, 'RTD');
```

Set the RTDType to Pt3851.

```
ch.RTDType='Pt3851'
```

ch =

Data acquisition analog input RTD channel 'ai3' on device 'cDAQ1Mod7'

Units: Celsius RTDType: Pt3851

```
RTDConfiguration: ThreeWire
RO: 'Unknown'
ExcitationCurrent: 0.0005
ExcitationSource: Internal
Coupling: DC
TerminalConfig: Differential
Range: -200 to +660 Celsius
Name: ''
ID: 'ai3'
Device: [1x1 daq.ni.CompactDAQModule]
MeasurementType: 'RTD'
ADCTimingMode: HighResolution
```

See Also addAnalogInputChannel

Properties

RTDConfiguration, RTDType

Purpose	Indicate whether device object is running	
---------	---	--

Description

Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.

Along with the Logging or Sending property, Running reflects the state of an analog input or analog output object. Running can be On or Off.

Running is automatically set to On once the start function is issued. When Running is On, you can acquire data from an analog input device or send data to an analog output device after the trigger occurs. For digital I/O objects, Running is typically used to indicate if time-based events are being generated.

Running is automatically set to Off once the stop function is issued, the specified data is acquired or sent, or a run-time error occurs. When Running is Off, you cannot acquire or send data. However, you can acquire one sample with the getsample function, or send one sample with the putsample function.

Characteristics	Usage	AI, AO, DIO, common to all channels and lines
	Access	Read-only
	Data type	String
	Read-only when running	N/A
Values	{Off} The	e device object is not running.
	On The	e device object is running.

Running

See Also Functions

getsample, putsample, start

Properties

Logging, Sending

Purpose Specify callback function to execute when run-time error occurs

Description

Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.

A run-time error event is generated immediately after a run-time error occurs. This event executes the callback function specified for RuntimeErrorFcn. Additionally, a toolbox error message is automatically displayed to the MATLAB workspace. If an error occurs that is not explicitly handled by the toolbox, then the hardware-specific error message is displayed.

The default value for RunTimeErrorFcn is daqcallback, which displays the event type, the time the event occurred, and the device object name along with the error message.

Run-time error event information is stored in the Type and Data fields of the EventLog property. The Type field value is Error. The Data field values are given below.

Data Field Value	Description
AbsTime	The absolute time (as a clock vector) the event occurred.
RelSample	The acquired (AI) or output (AO) sample number when the event occurred.
String	The descriptive error message.

Run-time errors include hardware errors and timeouts. Run-time errors do not include configuration errors such as setting an invalid property value.

Characteristics	Usage	AI, AO, common to all channels
	Access	Read/write
	Data type	String
	Read-only when running	No
Values	The default value is o	daqcallback.
See Also	Functions	
	daqcallback	
	Properties	
	EventLog, Timeout	

Purpose Specify per-channel rate at which analog data is converted to digital data, or vice versa

Description

Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.

SampleRate specifies the per-channel rate (in samples/second) that an analog input (AI) or analog output (AO) subsystem converts data. AI subsystems convert analog data to digital data, while AO subsystems convert digital data to analog data.

AI and AO subsystems have a finite (though often large) number of valid sampling rates. If you specify a sampling rate that does not match one of the valid values, the data acquisition engine automatically selects the nearest available sampling rate. In most data acquisition hardware, some valid sample rates can be non integers. See The Sampling Rate for more info about valid sample rates.

Because the engine can set the sampling rate to a value that differs from the value you specify, you should return the actual sampling rate using the get function or the device object display summary. Alternatively, you can use the setverify function, which sets the SampleRate value and then returns the actual value that is set. To find out the range of sampling rates supported by your board, use the propinfo function. Additionally, because the actual sampling rate depends on the number of channels contained by the device object and the ChannelSkew property value (AI only), SampleRate should be the last property you set before starting the device object.

Characteristics Usage

AI, AO, common to all channels

Access

Read/write

	Data type	Double
	Read-only when running	Yes
Values	The default value is o	obtained from the hardware driver.
Examples	Create the analog input object ai for a sound card and add two channels to it.	
	ai = analoginput(' addchannel(ai,1:2)	
		range of valid sampling rates with the ld of the propinfo function.
	rates = propinfo(a rates.ConstraintVa ans =	
	8000	48000
	To configure the per-channel sampling rate to 48 kHz:	
	set(ai,'SampleRate	e',48000)
	Alternatively, you can use the setverify function to configure and return the SampleRate value.	
	ActualRate = setve	erify(ai,'SampleRate',48000);
See Also	Functions	
	propinfo, setverify	/
	Properties	
	ChannelSkew	

Purpose	Indicate number of samples acquired per channel			
Description	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.			
	of samples acquired	SamplesAcquired is continuously updated to reflect the current number of samples acquired by an analog input object. It is reset to zero after a start function is issued.		
	Use the SamplesAvailable property to find out how many samples are available to be extracted from the engine.			
Characteristics	Usage Access	AI, common to all channels Read-only		
	Data type Read-only when running	Double N/A		
Values		ously updated to reflect the current number of he default value is zero.		
See Also	Functions start			
	Properties SamplesAvailable			

SamplesAcquiredFcn

 Purpose
 Specify callback function to execute when predefined number of samples is acquired for each channel group member

 Description
 Image: Mote You cannot use the legacy interface on 64-bit MATLAB. See "Session-Based Interface" to acquire and generate data.

A samples acquired event is generated immediately after the number of samples specified by the SamplesAcquiredFcnCount property is acquired for each channel group member. This event executes the callback function specified for SamplesAcquiredFcn.

The samples acquired event is executed regardless of its waiting time in the queue.

Use SamplesAcquiredFcn to trigger an event each time a specified number of samples is acquired. To process samples at regular time intervals, use the TimerFcn property.

Samples acquired event information is not stored in the EventLog property. When the callback function is executed, the second argument is a structure containing two fields. The Type field value is set to the string 'SamplesAcquired', and the Data field values are given below.

Data Field Value	Description
AbsTime	The absolute time (as a clock vector) the event occurred.
RelSample	The acquired sample number when the event occurred.

Characteristics	Usage	AI, common to all channels
	Access	Read/write

	Data type	String
	Read-only when running	No
Values	The default value is a	an empty string.
See Also	Properties	
	EventLog, SamplesAc	quiredFcnCount, TimerFcn

SamplesAcquiredFcnCount

Purpose	Specify number of samples to acquire for each channel group member before samples acquired event is generated			
Description	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.			
	A samples acquired event is generated immediately after the number of samples specified by SamplesAcquiredFcnCount is acquired for each channel group member. This event executes the callback function specified by the SamplesAcquiredFcn property.			
Characteristics	Usage	AI, common to all channels		
	Access	Read/write		
	Data type	Double		
	Read-only when running	Yes		
Values	The default value is	1024.		
See Also	Properties	Properties		
	SamplesAcquiredFc	n		

Purpose	Indicate number of s	amples available per channel in engine		
Description	Note You cannot us	se the legacy interface on 64–bit MATLAB. See		
	Session-Based Inter	face" to acquire and generate data.		
	of samples that can be member with the ge SamplesAvailable i) objects, SamplesAvailable indicates the number be extracted from the engine for each channel group tdata function. For analog output (AO) objects, ndicates the number of samples that have been data function, and can be sent (output) to each ber.		
	After data has been extracted (AI) or output (AO), the SamplesAvailable value is reduced by the appropriate number of samples. For AI objects, SamplesAvailable is reset to zero after a start function is issued.			
	For AI objects, use the SamplesAcquired property to find out how many samples have been acquired since the start function was issued. For AO objects, use the SamplesOutput property to find out how many samples have been output since the start function was issued.			
Characteristics	Usage	AI, AO, common to all channels		
	Access	Read-only		
	Data type	Double		
	Read-only when running	N/A		
Values		tically updated based on the number of samples out) or sent (analog output). The default value		

See Also Functions

start

Properties

SamplesAcquired, SamplesOutput

Purpose	Indicate number of s	samples output per channel from engine			
Description	manuale number of sumpres suspas per enamer nom engine				
2000 priori	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.				
	SamplesOutput is continuously updated to reflect the current number of samples output by an analog output object. It is reset to zero after the device objects stops and data has been queued with the putdata function.				
	Use the SamplesAvailable property to find out how many samples are available to be output from the engine.				
Characteristics	Usage	AO, common to all channels			
	Access	Read-only			
	Data type	Double			
	Read-only when running	N/A			
Values	The value is continuously updated to reflect the current number of samples output. The default value is zero.				
See Also	Functions				
	putdata				
	Properties				
	SamplesAvailable				

SamplesOutputFcn

 Purpose
 Specify callback function to execute when predefined number of samples is output for each channel group member

 Description
 Note: No

Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.

A samples output event is generated immediately after the number of samples specified by the SamplesOutputFcnCount property is output for each channel group member. This event executes the callback function specified for SamplesOutputFcn.

Use SamplesOutputFcn to trigger an event each time a specified number of samples is output. To process samples at regular time intervals, use the TimerFcn property.

Samples output event information is not stored in the EventLog property. When the callback function is executed, the second argument is a structure containing two fields. The Type field value is set to the string 'SamplesOutput', and the event Data field values are given below.

Data Field Value	Description
AbsTime	The absolute time (as a clock vector) the event occurred.
RelSample	The output sample number when the event occurred.

Characteristics Usage

sage

 $\operatorname{AO},$ common to all channels

Access

Read/write

	Data type	String
	Read-only when running	No
Values	The default value is a	n empty string.
See Also	Properties	
	EventLog, SamplesOutputFcnCount	

SamplesOutputFcnCount

Purpose	Specify number of samples to output for each channel group member before samples output event is generated			
Description	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.			
	A samples output event is generated immediately after the number of samples specified by SamplesOutputFcnCount is output for each channel group member. This event executes the callback function specified by the SamplesOutputFcn property.			
Characteristics	Usage	AO, common to all channels		
	Access	Read/write		
	Data type	Double		
	Read-only when running	Yes		
Values	The default value is 1	1024.		
See Also	Properties			
	SamplesOutputFcn			

Purpose	Specify number of samples to acquire for each channel group member for each trigger that occurs		
Description	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
	SamplesPerTrigger specifies the number of samples to acquire for each analog input channel group member for each trigger that occurs. If SamplesPerTrigger is set to Inf, then the analog input object continually acquires data until a stop function is issued or an error occurs.		
	The default value of SamplesPerTrigger is calculated by the data acquisition engine such that one second of data is acquired. This calculation is based on the value of SampleRate.		
Characteristics	Usage Access Data type Read-only when running	AI, common to all channels Read/write Double Yes	
Values	The default value is set by the acquired.	engine such that one second of data is	
Examples	<pre>Create the analog input object to it. ai = analoginput('winsound addchannel(ai,1:2);</pre>	ai for a sound card and add two channels ');	

By default, a one second acquisition in which 8000 samples are acquired for each channel is defined. To define a two second acquisition at the same sampling rate:

set(ai, 'SamplesPerTrigger', 16000)

See Also Functions

stop

Properties

SampleRate

Purpose	Number of scans	acquired during op	eration
---------	-----------------	--------------------	---------

Description In the session-based interface, the ScansAcquired property displays the number of scans acquired after you start the operation using startBackground.

Values The read-only value represents the number of scans acquired by the hardware. This value is reset each time you call startBackground.

Example Display Number of Scans Acquired

Acquire analog input data and display the number of scans acquired.

Create a session, add an analog input channel,

```
s = daq.createSession('ni');
ch=addAnalogInputChannel(s,'Dev1','ai1','voltage');
```

See how many scan the session had acquired.

s.ScansAcquired

ans =

0

Start the acquisition and see how many scans the session has acquired

```
startForeground(s);
s.ScansAcquired
```

ans =

```
1000
```

See Also Properties

NumberOfScans, ScansOutputByHardware

Functions

startBackground

Purpose	Indicate number of scans output by hardware			
Description	In the session-based interface, the ScansOutputByHardware property displays the number of scans output by the hardware after you start the operation using startBackground.			
	Tip The value depends on information from the hardware.			
Values	This read-only value is based on the output of the hardware configured for your session.			
Example	Display Scans Output by Hardware			
	Generate data on an analog output channel and to see how many scans are output by the hardware.			
	Create a session and add an analog output channel.			
	s = daq.createSession('ni'); ch=addAnalogOutputChannel(s,'Dev1','ao1','voltage');			
	Queue some output data and start the generation.			
	s.queueOutputData (linspace(-1, 1, 1000)'); startForeground(s);			
	Examine the ScansOutputByHardware property.			
	s.ScansOutputByHardware			
	ans =			
	1000			
See Also	Properties			
	ScansAcquired, ScansQueued			

Functions

queueOutputData, startBackground

Purpose Indicate number of scans queued for output

Description In the session-based interface, the ScansQueued property displays the number of scans queued for output queueOutputData. The ScansQueued property increases when you successfully call queueOutputData. The ScansQueued property decreases when the hardware reports that it has successfully output data.

Values This read-only value is based on the number of scans queued.

Example Display Scans Queued

Queue some output data to an analog output channel and examine the session properties to see how many scans are queued.

Create a session and add an analog output channel.

```
s = daq.createSession('ni');
ch=addAnalogOutputChannel(s,'Dev1','ao1','voltage');
```

Queue some output data and call the ScansQueued property to see number of data queued.

```
s.queueOutputData (linspace(-1, 1, 1000)');
s.ScansQueued
```

s.ScansQueued

ans =

1000

See Also Properties

ScansOutputByHardware

Functions

queueOutputData

Sending

Purpose	Indicate whether data is being sent to hardware device		
Description	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
	-	the Running prope out object. Sending	erty, Sending reflects the state of an can be On or Off.
	-	-	o On when a trigger occurs. When Sending put to the analog output subsystem.
	Sending is automatically set to Off when the queued data has been output, an error occurs, or a stop function is issued. When Sending is Off, data is not being output to the analog output subsystem although you can output a single sample with the putsample function.		
Characteristics	Usage		AO, common to all channels
	Access		Read-only
	Data type		String
	Read-only	when running	N/A
Values	{Off}	Data is not being	sent to the analog output hardware.
	On	Data is being ser	at to the analog output hardware.
See Also	Functions		
		_	
	Properties	5	
	Running		

Purpose	Sensitivity of an analog channel			
Description	When working with the session-based interface, the Sensitivity property to set the accelerometer or microphone sensor channel.			
	Sensitivity in an accelerometer channel is expressed as $\frac{v}{g}$, or volts per gravity.			
	Sensitivity in a microphone channel is expressed as $\frac{v}{pa}$, or volts per pascal.			
Examples	Create a session object, add an analog input channel, with the 'accelerometer' MeasurementType.			
	s = daq.createSession('ni');			
	s.addAnalogInputChannel('Dev4', 'aiO', 'accelerometer')			
	Data acquisition session using National Instruments hardware: Will run for 1 second (2000 scans) at 2000 scans/second. Number of channels: 1 index Type Device Channel MeasurementType Range Name			
	1 ai Dev4 ai0 Accelerometer (PseudoDiff) -5.0 to +5.0 Volts			
	Change the Sensitivity to 10.2e-3 V/G:			
	s.Channels(1).Sensitivity = 10.2e-3			
	s =			
	Data acquisition session using National Instruments hardware: Will run for 1 second (2000 scans) at 2000 scans/second. Number of channels: 1			
	index Type Device Channel MeasurementType Range Name			

Sensitivity

1 ai Dev4 ai0 Accelerometer (PseudoDiff) -490 to +490 Gravities

See Also addAnalogInputChannel

Purpose Specify range of data expected from sensor

Description

Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.

You use SensorRange to scale your data to reflect the range you expect from your sensor. You can find the appropriate sensor range from your sensor's specification sheet.

The data is scaled while it is extracted from the engine with the getdata function according to the formula

 $scaled \ value = \frac{(A \ / \ D \ value)(units \ range)}{(sensor \ range)}$

The A/D value is constrained by the InputRange property, which reflects the gain and polarity of your hardware channels. The units range is given by the UnitsRange property.

Characteristics	Usage	AI, per channel
	Access	Read/write
	Data type	Two-element vector of doubles
	Read-only when running	No

 Values
 The default value is determined by the default value of the InputRange property.

See Also Functions

getdata

Properties

InputRange, Units, UnitsRange

Purpose	Indicate	location	of channel's	shunt resistor
---------	----------	----------	--------------	----------------

Description When working with the session-based interface, ShuntLocation on the analog input current channel indicates if the shunt resistor is located internally on the device or externally. Values are:

- 'Internal': when the shunt resistor is located internally.
- 'External': when the shunt resistor is located externally.

If your device supports an internal shunt resistor, this property is set to Internal by default. If the shunt location is external, you must specify the shunt resistance value.

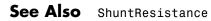
Example Specify Shunt Location

Set the shunt location of an analog input current channel.

Create a session and add an analog input current channel.

```
s=daq.createSession('ni')
ch=addAnalogInputChannel(s,'cDAQ1Mod7',0,'Current');
```

Set the ShuntLocation to Internal.


```
ch.ShuntLocation='Internal'
```

ch =

Data acquisition analog input current channel 'ai0' on device 'cDAQ1Me

```
ShuntLocation: Internal
ShuntResistance: 20
Coupling: DC
TerminalConfig: Differential
Range: -0.025 to +0.025 A
Name: ''
ID: 'ai0'
Device: [1x1 daq.ni.CompactDAQModule]
```

MeasurementType: 'Current' ADCTimingMode: HighResolution

Purpose	Resistance value of channel's shunt resistor			
Description	When working with the session-based interface, the analog input current channel's ShuntResistance property indicates resistance in ohms. This value is automatically set if the shunt resistor is located internally on the device and is read only.			
	Note Before starting an analog output channel with an external shunt resistor, specify the shunt resistance value.			
Example	Specify Shunt Resistance			
	Set the shunt resistance of an analog input current channel.			
	Create a session and add an analog input current channel.			
	s=daq.createSession('ni') ch=addAnalogInputChannel(s,'cDAQ1Mod7',0,'Current');			
	Set the <code>ShuntLocation</code> to <code>External</code> and the <code>ShuntResistance</code> to 20.			
	ch.ShuntLocation='External'; ch.ShuntResistance=20			
	ch =			
	Data acquisition analog input current channel 'aiO' on device 'cDAQ1Mo			
	ShuntLocation: External ShuntResistance: 20 Coupling: DC TerminalConfig: Differential Range: -0.025 to +0.025 A Name: '' ID: 'ai0' Device: [1x1 daq.ni.CompactDAQModule]			

MeasurementType: 'Current' ADCTimingMode: HighResolution

See Also ShuntLocation

```
Purpose
                  Indicates trigger source terminal
Description
                  When working with the session-based interface, the Source property
                  indicates the device and terminal to which you added a trigger.
Example
                  View Clock Connection Source
                  Create an clock external clock connection and view the connection
                  properties.
                  Create a session and add a digital input channel.
                  s=daq.createSession('ni');
                  ch=addDigitalChannel(s,'Dev1','Port0/Line2','Input0nly');
                  Add an external scan clock connection.
                  s.addClockConnection('External', 'Dev1/PFI0', 'ScanClock')
                  ans =
                  Scan Clock is provided externally and will be received by 'Dev1' at to
                          Source: 'External'
                    Destination: 'Dev1/PFI0'
                            Type: ScanClock
See Also
                  DestinationaddTriggerConnection
```

StandardSampleRates property

Purpose Display standard rates of sampling

Description This property displays the standard sample rates supported by your audio device. You can choose to use the standard rates or use values within the given range. See UseStandardSampleRate for more information.

Standard sample rates for DirectSound audio devices are:

- 8000
- 8192
- 11025
- 16000
- 22050
- 32000
- 44100
- 47250
- 48000
- 50000
- 88200
- 96000
- 176400
- 192000
- 352800

Example Set Rate of an Audio Session

Specify a non standard sample rate for a session with multichannel audio devices.

Create a session and add an audio channel.

```
s=daq.createSession ('directsound')
ch=addAudioInputChannel(s,'Audio1',1);
```

Specify the session to use nonstandard sample rates.

s.UseStandardSampleRates=false

```
Data acquisition session using DirectSound hardware:

Will run for 1 second (44100 scans) at 44100 scans/second.

Number of channels: 1

index Type Device Channel MeasurementType Range Name

1 audi Audio1 1 Audio -1.0 to +1.0
```

Change the session rate to 85000.

s.Rate=85000

s =

Data acquisition session using DirectSound hardware: Will run for 1 second (85000 scans) at 85000 scans/second. Number of channels: 1 index Type Device Channel MeasurementType Range Name 1 audi Audio1 1 Audio -1.0 to +1.0

See Also UseStandardSampleRate | BitsPerSample | addAudioInputChannel | addAudioOutputChannel

StartFcn

Purpose	Specify callback function to execute before device object runs
Description	
•	Note You cannot use the legacy interface on 64-bit MATLAB. See
	"Session-Based Interface" to acquire and generate data.

A start event is generated immediately after the start function is issued. This event executes the callback function specified for StartFcn. When the callback function has finished executing, Running is automatically set to On and the device object and hardware device begin executing. Note that the device object is not started if an error occurs while executing the callback function.

Start event information is stored in the Type and Data fields of the EventLog property. The Type field value is Start. The Data field values are given below.

Data Field Value	Description
AbsTime	The absolute time (as a clock vector) the event occurred.
RelSample	The acquired (AI) or output (AO) sample number when the event occurred.

Characteristics

AI, AO, common to all channels

Access Data type

Usage

Read/write String

Read-only when running

No

See Also Functions

start

Properties

EventLog, Running

StopFcn

Purpose	Specify callback function to execute after device object runs		
Description		ot use the legacy interface on 64–bit MATLAB. See Interface" to acquire and generate data.	
	A stop event is generated immediately after the device object and hardware device stop executing. This occurs when		
	• A stop function is issued.		
	• For analog input (AI) objects, the requested number of samples to acquire was reached or data was missed. For analog output (AO) objects, the requested number of samples to output was reached.		
	• A run-time error occurred.		
	A stop event executes the callback function specified for StopFcn. Under most circumstances, the callback function is not guaranteed to complete execution until sometime after the device object and hardware device stop, and the Running property is set to Off.		
	-	mation is stored in the Type and Data fields of the rty. The Type field value is Stop. The Data field values	
	Data Field Value	Description	
	AbsTime	The absolute time (as a clock vector) the event occurred.	
	RelSample	The acquired (AI) or output (AO) sample number when the event occurred.	

Characteristics	Usage	AI, AO, common to all channels
	Access	Read/write
	Data type	String
	Read-only when running	No
Values	The default value is	an empty string.
See Also	Functions	
	stop	
	Properties	
	EventLog, Running	

Purpose	Specify device object label		
Description	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
	Tag provides a means to identify device objects with a label. Using the daqfind function and the Tag value, you can identify and retrieve a device object that was cleared from the MATLAB workspace.		
Characteristics	Usage	AI, AO, DIO, common to all channels and lines	
	Access	Read/write	
	Data type	String	
	Read-only when running	No	
Values	The default value is an empty string.		
Examples	Create the analog input object ai for a sound card and add two channels to it.		
	ai = analoginput('winsound'); addchannel(ai,1:2);		
	Assign ai a label using Tag.		
	<pre>set(ai,'Tag','Sound')</pre>		
	If ai is cleared from the workspace, you can use daqfind and the Tag value to identify and retrieve the device object.		
	clear ai aicell = daqfind('Tag','Sound'); ai = aicell{1};		

See Also Functions

daqfind

Terminal

Purpose	PFI terminal of counter subsystem		
Description	When working with the session-based interface, the Terminal property indicates the counter subsystem's corresponding PFI terminal.		
Example	Determine Counter Output Channel Terminal		
	Determine the correct terminal on your counter channel that you will connect your input signal to, when synchronizing your session operation.		
	Create a session and add a counter output channel.		
	s=daq.createSession('ni'); ch=addCounterInputChannel(s,'cDAQ1Mod5', 'ctr0', 'PulseWidth');		
	Examine the Terminal property of your channel.		
	ch.Terminal		
	ans =		
	PFI1		
See Also	addCounterInputChannel, addCounterOutputChannel		

Purpose Specify terminal configuration

Description Use the TerminalConfig to change the configuration of your analog channel. The property displays the hardware default configuration. You can change this to

- SingleEnded
- NonReferencedSingleEnded
- Differential
- PseudoDifferential

Example Change Analog Channel Terminal Configuration

Change the terminal configuration of an analog input channel.

Create a session and add an analog input voltage channel.

```
s=daq.createSession('ni');
ch=addAnalogInputChannel(s,'dev5',0,'voltage')
```

ch =

Data acquisition analog input voltage channel 'ai0' on device 'Dev5':

```
Coupling: DC
TerminalConfig: Differential
Range: -10 to +10 Volts
Name: ''
ID: 'ai0'
Device: [1x1 daq.ni.DeviceInfo]
MeasurementType: 'Voltage'
```

Change the TerminalConfig of the channel to SingleEnded.

ch.TerminalConfig='SingleEnded'

ch =

Data acquisition analog input voltage channel 'ai0' on device 'Dev5': Coupling: DC TerminalConfig: SingleEnded Range: -10 to +10 Volts Name: '' ID: 'ai0' Device: [1x1 daq.ni.DeviceInfo] MeasurementType: 'Voltage'

See Also addAnalogInputChannel | addAnalogOutputChannel

Purpose Terminals available on device or CompactDAQ chassis

Description When working with the session-based interface, the Terminals on the device or the CompactDAQ chassis lists all available terminals. The list includes terminals available for trigger and clock connections. When you access the Terminals property on modules on a CompactDAQ chassis, the terminals are on the chassis, not on the module.

Examples Display Device Terminals

Discover available devices.

d=daq.getDevices

d =

Data acquisition devices:

index	Vendor	Device ID		Description		
1	ni	cDAQ1Mod1	National	Instruments	NI	9205
2	ni	cDAQ1Mod2	National	Instruments	NI	9263
3	ni	cDAQ1Mod3	National	Instruments	NI	9234
4	ni	cDAQ1Mod4	National	Instruments	NI	9201
5	ni	cDAQ1Mod5	National	Instruments	NI	9402
6	ni	cDAQ1Mod6	National	Instruments	NI	9213
7	ni	cDAQ1Mod7	National	Instruments	NI	9219
8	ni	cDAQ1Mod8	National	Instruments	NI	9265

Access the Terminals property of NI 9205 with index 1.

d(1).Terminals

ans =

'cDAQ1/PFI0' 'cDAQ1/PFI1' 'cDAQ1/20MHzTimebase'

Terminals

'cDAQ1/80MHzTimebase' 'cDAQ1/ChangeDetectionEvent' 'cDAQ1/AnalogComparisonEvent' 'cDAQ1/100kHzTimebase' 'cDAQ1/SyncPulse0' 'cDAQ1/SyncPulse1'

See Also Functions

daq.getDevices, addTriggerConnection,addClockConnection

Purpose	Select thermocouple	type
---------	---------------------	------

Description When working with the session-based interface, use the ThermocoupleType property to select the type of thermocouple you will use to make your measurements. Select the type based on the temperature range and sensitivity you need.

Values You can set the ThermocoupleType to:

- 'J'
- 'K'
- 'N'
- 'R'
- 'S'
- 'T'
- 'B'
- 'E'

By default the thermocouple type is 'Unknown'.

Example Specify Thermocouple Type

Create a session and add an analog input channel with 'Thermocouple' measurement type.

```
s=daq.createSession('ni');
ch=addAnalogInputChannel(s,'cDAQ1Mod6','ai1','Thermocouple')
```

ch =

Data acquisition analog input thermocouple channel 'ai1' on device 'cl

Units: Celsius ThermocoupleType: Unknown

Range: 0 to +750 Celsius Name: '' ID: 'ai1' Device: [1x1 dag.ni.CompactDAQModule] MeasurementType: 'Thermocouple' ADCTimingMode: HighResolution Set the ThermocoupleType property to 'J'. ch.Thermocoupletype = 'J'ch = Data acquisition analog input thermocouple channel 'ai1' on device 'cDAQ1 Units: Celsius ThermocoupleType: J Range: 0 to +750 Celsius Name: '' ID: 'ai1' Device: [1x1 daq.ni.CompactDAQModule] MeasurementType: 'Thermocouple' ADCTimingMode: HighResolution

See Also addAnalogInputChannel

Purpose	Specify additional waiting time to extract or queue data		
Description	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
	The Timeout value (in seconds) is added to the time required to extract data from the engine or queue data to the engine. Because data is extracted with the getdata function, and queued with the putdata function, Timeout is associated only with these two "blocking" functions.		
	If the requested data is not extracted or queued after waiting the required time, then a time-out condition occurs and control is immediately returned to the MATLAB workspace. A time-out is one of the conditions for stopping an acquisition. When a time-out occurs, the callback function specified by RuntimeErrorFcn is called.		
	Timeout is not associated with hardware time-out conditions. Possible hardware time-out conditions include		
	• Triggering on a vol	tage level and that level never occurs	
	• Externally clocking never occurs	g an acquisition and the external clock signal	
	• Losing the hardware connection		
	To check for hardware timeouts, you might need to poll the appropriate property value.		
Characteristics	Usage	AI, AO, common to all channels	
	Access	Read/write	
	Data type	Double	
	Read-only when running	Yes	

Timeout

Values	The default value is one second.
See Also	Functions
	getdata, putdata
	Properties
	RuntimeErrorFcn

Purpose Specify callback functio

Specify callback function to execute when predefined time period passes

Description

Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.

A timer event is generated whenever the time specified by the TimerPeriod property passes. This event executes the callback function specified for TimerFcn. Time is measured relative to when the device object starts running.

Some timer events might not be processed if your system is significantly slow or if the TimerPeriod value is too small. The time taken to process an event depends on the sample rate, the performance of your system, and the data itself.

There can only be one timer event waiting in the queue at a given time. The callback function must process all available data to ensure that it keeps up with the inflow of data. Alternatively, you can use the SamplesAcquiredFcn (analog input) or SamplesOutputFcn (analog output) property to process the data when a specified number of samples is acquired or output.

Note For analog input objects, use the SamplesAvailable property inside a callback function to determine the number of samples available in the queue.

For digital I/O objects, timer events are typically used to update and display the state of the device object.

Timer event information is not stored in the EventLog property. When the callback function is executed, the second argument is a structure containing two fields. The Type field value is set to the string 'Timer', and the event Data field value is given below.

Data Field Value	Description
AbsTime	The absolute time (as a clock vector) the event occurred.

Characteristics	Usage	AI, AO, DIO, common to all channels and lines
	Access	Read/write
	Data type	String
	Read-only when running	No
Values	The default value is a	an empty string.

See Also Properties

EventLog, SamplesAcquiredFcn, SamplesOutputFcn, TimerPeriod

Purpose	Specify time period b	etween timer events
Description		e the legacy interface on 64–bit MATLAB. See face" to acquire and generate data.
	TimerPeriod specifies the time, in seconds, that must pass before the callback function specified for TimerFcn is called. Time is measured relative to when the hardware device starts running.	
	slowed or if the Timer application for timer	ight not be processed if your system is significantly Period value is too small. For example, a common events is to display data. However, because CPU-intensive task, some of these events might
Characteristics	Usage	AI, AO, DIO, common to all channels and lines
	Access	Read/write
	Data type	Double
	Read-only when running	No
Values	The default value is (0.1 second.
See Also	Properties	
	TimerFcn	

TriggerChannel

Purpose	Specify channel serving as trigger source		
Description	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
	TriggerChannel specifies the channel serving as the trigger source. The trigger channel must be specified before the trigger type. You might need to configure the TriggerCondition and TriggerConditionValue properties in conjunction with TriggerChannel. For all supported vendors, if TriggerType is Software, then you must acquire data from the channel being used for the trigger source. For National Instruments hardware, if TriggerType is HwAnalogChannel, then TriggerChannel must be the first element of the channel group. The exception is if you are using simultaneous acquisition devices such as the S-series boards, with which you can specify any channel for the TriggerChannel value.		
Characteristics	Usage	AI, common to all channels	
	Access	Read/write	
	Data type	Vector or scalar	
	Read-only when running	Yes	
Values	The data type can be The default value is a	either vector or scalar, representing one channel. an empty vector.	
Examples	Create the analog input object ai, add two channels, and define the trigger source as channel 2.		
	ai = analoginput(' ch = addchannel(ai		

set(ai,'TriggerChannel',ch(2))
set(ai,'TriggerType','Software')

See Also Properties

TriggerCondition, TriggerConditionValue, TriggerType

TriggerCondition

Purpose	Specify condition that	must be satisfied before trigger executes	
Description		the legacy interface on 64–bit MATLAB. See ce" to acquire and generate data.	
	The available trigger conditions depend on the value of TriggerType. If TriggerType is Immediate or Manual, the only available TriggerCondition is None. If TriggerType is Software, then TriggerCondition can be Rising, Falling, Leaving, or Entering. These trigger conditions require one or more voltage values to be specified for the TriggerConditionValue property.		
		e you are using, additional trigger conditions fer to the values listed below.	
Values	All Supported Harc	lware	
	The following trigger condition is used when TriggerType is Immed: or Manual.		
	{None}	No trigger condition is required.	
	The following trigger of Software.	conditions are available when TriggerType is	
	{Rising}	The trigger occurs when the signal has a positive slope when passing through the specified value.	
	Falling	The trigger occurs when the signal has a negative slope when passing through the specified value.	

Leaving	The trigger occurs when the signal leaves the specified range of values.
Entering	The trigger occurs when the signal enters the specified range of values.

Measurement Computing

The following trigger conditions are available when $\ensuremath{\texttt{TriggerType}}$ is <code>HwDigital</code>.

GateHigh	The trigger occurs as long as the digital signal is high.
GateLow	The trigger occurs as long as the digital signal is low.
TrigHigh	The trigger occurs when the digital signal is high.
TrigLow	The trigger occurs when the digital signal is low.
TrigPosEdge	The trigger occurs when the positive (rising) edge of the digital signal is detected.
{TrigNegEdge}	The trigger occurs when the negative (falling) edge of the digital signal is detected.

The following trigger conditions are available when $\ensuremath{\texttt{TriggerType}}$ is HwAnalog.

{TrigAbove}	The trigger occurs when the analog signal makes a transition from below the specified value to above.
TrigBelow	The trigger occurs when the analog signal makes a transition from above the specified value to below.

GateNegHys	The trigger occurs when the analog signal is more than the specified high value. The acquisition stops if the analog signal is less than the specified low value.
GatePosHys	The trigger occurs when the analog signal is less than the specified low value. The acquisition stops if the analog signal is more than the specified high value.
GateAbove	The trigger occurs as long as the analog signal is more than the specified value.
GateBelow	The trigger occurs as long as the analog signal is less than the specified value.
GateInWindow	The trigger occurs as long as the analog signal is within the specified range of values.
GateOutWindow	The trigger occurs as long as the analog signal is outside the specified range of values.

National Instruments

The following trigger conditions are available for AI objects when TriggerType is HwDigital.

PositiveEdge	The trigger occurs when the positive (rising) edge of a digital signal is detected.
{NegativeEdge}	The trigger occurs when the negative (falling) edge of a digital signal is detected.

The following trigger conditions are available for AO objects on NI-DAQmx devices when TriggerType is HwDigital.

	PositiveEdge	The trigger occurs when the positive (rising) edge of a digital signal is detected.
	{NegativeEdge}	The trigger occurs when the negative (falling) edge of a digital signal is detected.
	The following trigger HwAnalogChannel or	conditions are available when TriggerType is HwAnalogPin.
	{AboveHighLevel}	The trigger occurs when the analog signal is above the specified value.
	BelowLowLevel	The trigger occurs when the analog signal is below the specified value.
	InsideRegion	The trigger occurs when the analog signal is inside the specified region.
	LowHysteresis	The trigger occurs when the analog signal is less than the specified low value with hysteresis given by the specified high value.
	HighHysteresis	The trigger occurs when the analog signal is greater than the specified high value with hysteresis given by the specified low value.
See Also	Properties	
	TriggerChannel, Tri	iggerConditionValue,TriggerType

TriggerCondition

Purpose	Specify condition that must be satisfied before trigger executes
Description	When working with the session-based interface, use the TriggerCondition property to specify the signal condition that executes the trigger, which synchronizes operations on devices in a session. For more information, see "Synchronization".
Values	Set the trigger condition to RisingEdge or FallingEdge.
Examples	Specify Session Connection Trigger Condition
	Create a session and add channels and trigger to the session.
	s=daq.createSession('ni'); addAnalogInputChannel(s,'Dev1', 0, 'voltage'); addAnalogInputChannel(s,'Dev2', 0, 'voltage'); addTriggerConnection(s,'Dev1/PFI4','Dev2/PFI0','StartTrigger');
	Change the trigger condition to FallingEdge.
	s.Connections(1).TriggerCondition='FallingEdge'
	S =
	Data acquisition session using National Instruments hardware: Will run for 1 second (1000 scans) at 1000 scans/second.
	Trigger Connection added. (Details)
	Number of channels: 2 index Type Device Channel MeasurementType Range Name
	1 ai Dev1 ai0 Voltage (Diff) -10 to +10 Volts 2 ai Dev2 ai0 Voltage (Diff) -10 to +10 Volts
	Click on (Details) to see the connection details.

Start Trigger is provided by 'Dev1' at 'PFI4' and will be received by 'De

TriggerType: 'Digital' TriggerCondition: FallingEdge Source: 'Dev1/PFI4' Destination: 'Dev2/PFI0' Type: StartTrigger

See Also addTriggerConnection

Properties

TriggerType

TriggerConditionValue

Purpose	Specify voltage value	(s) that must be satisfied before trigger executes	
Description	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
	Software, and is igno	ggerConditionValue is used when TriggerType is ored when TriggerCondition is None. For vendor r to the TriggerCondition and the TriggerType	
	and TriggerConditi TriggerCondition is accepts a single value Leaving, TriggerCon	trigger, the values specified for TriggerCondition onValue must be satisfied. When a Rising or Falling, TriggerConditionValue e. When TriggerCondition is Entering or aditionValue accepts a two-element vector of pecific values, refer to the TriggerCondition	
Characteristics	Usage	AI, common to all channels	
	Access	Read/write	
	Data type	Double (or a two-element vector of doubles)	
	Read-only when running	Yes	
Values	The default value is z	zero.	
Examples	Create the analog inp	out object ai and add one channel to it.	
-	ai = analoginput(' ch = addchannel(ai		

The trigger executes when a signal with a negative slope passing through 0.2 volts is detected on channel 1.

set(ai, 'TriggerChannel',ch)
set(ai, 'TriggerType', 'Software')
set(ai, 'TriggerCondition', 'Falling')
set(ai, 'TriggerConditionValue',0.2)

Create the analog input object ai for a National Instruments device and add four channels to it.

```
ai = analoginput('nidaq', 'Dev1');
ch = addchannel(ai,0:3);
```

The trigger executes when a signal with a positive slope passing through 4.5 volts is detected on PFI2.

```
set(ai, 'TriggerType', 'HwDigital')
set(ai, 'HwDigitalTriggerSource', 'PFI2')
set(ai, 'TriggerCondition', 'PositiveEdge')
set(ai, 'TriggerConditionValue', 4.5)
```

See Also Properties

TriggerCondition, TriggerType

TriggerDelay

Purpose	Specify delay value for	r data logging		
Description	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.			
	specified with a negative specified with a positive in units of time or same	retriggers and postriggers. Pretriggers are ive TriggerDelay value while postriggers are we TriggerDelay value. You can delay a trigger aples with the TriggerDelayUnits property. fined for hardware triggers or when TriggerType		
	trigger as specified by pairs are returned to t	e included as part of the total samples acquired per the SamplesPerTrigger property. If sample-time the workspace with the getdata function, then are identified with negative time values.		
Characteristics	Usage Access Data type Read-only when running	AI, common to all channels Read/write Double Yes		
Values	The default value is ze	ero.		
Examples	Create the analog inpu ai = analoginput('w ch = addchannel(ai,			

Configure ai to acquire 44,100 samples per trigger with 11,025 samples (0.25 seconds) acquired as pretrigger data.

set(ai,'SampleRate',44100)
set(ai,'TriggerType','Manual')
set(ai,'SamplesPerTrigger',44100)
set(ai,'TriggerDelay',-0.25)

See Also Properties

SamplesPerTrigger, TriggerDelayUnits

TriggerDelayUnits

Purpose	Specify units in w	hich trigger delay data is measured	
Description	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
	TriggerDelayUnits can be Seconds or Samples. If TriggerDelayUnits is Seconds, then data logging is delayed by the specified time for each channel group member. If TriggerDelayUnits is Samples, then data logging is delayed by the specified number of samples for each channel group member.		
	The trigger delay	value is given by the TriggerDelay property.	
Characteristics	5 Usage Access	AI, common to all channels Read/write	
	Data type	String	
	Read-only when running	Yes	
Values	{Seconds}	The trigger is delayed by the specified number of seconds.	
	Samples	The trigger is delayed by the specified number of samples.	
See Also	Properties TriggerDelay		

Purpose Specify callback function to execute when trigger occurs

Description

Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.

A trigger event is generated immediately after a trigger occurs. This event executes the callback function specified for TriggerFcn. Under most circumstances, the callback function is not guaranteed to complete execution until sometime after Logging is set to On for analog input (AI) objects, or Sending is set to On for analog output (AO) objects.

Trigger event information is stored in the Type and Data fields of the EventLog property. The Type field value is Trigger. The Data field values are given below.

	Data Field Value	Description
	AbsTime	The absolute time (as a clock vector) the event occurred.
	RelSample	The acquired (AI) or output (AO) sample number when the event occurred.
	Channel	The index number for each input channel serving as a trigger source (AI only).
	Trigger	The trigger number.
Characteristics	Usage	AI, AO, common to all channels

Access
Data type
Read-only when
running

AI, AO, common to all channel Read/write String No

TriggerFcn

Values	The default value is an empty string.
--------	---------------------------------------

See Also Functions

trigger

Properties

EventLog, Logging

Purpose Specify number of additional times trigger executes

Description

Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.

You can configure a trigger to occur once (one-shot acquisition) or multiple times. If TriggerRepeat is set to its default value of zero, then the trigger executes once. If TriggerRepeat is set to a positive integer value, then the trigger executes once, and is repeated the specified number of times. For example, if the value is set to 2, you will get a total of 3 triggers. If TriggerRepeat is set to inf then the trigger executes continuously until a stop function is issued or an error occurs.

You can quickly evaluate how many triggers have executed by examining the TriggersExecuted property or by invoking the display summary for the device object. The display summary is invoked by typing the device object name at the MATLAB Command Window.

Note We have observed that National Instruments USB devices have a significant cycle time for the communications required to trigger the device. If you are using an NI USB device, we recommend that you set up longer acquisitions that use fewer triggers. That is, increase SamplesPerTrigger and decrease TriggerRepeat.

Characteristics Usage

Access Data type Read-only when

running

AI, common to all channels Read/write Double Yes

TriggerRepeat

Values 7	The	default	value	\mathbf{is}	zero.
----------	-----	---------	-------	---------------	-------

See Also Functions

disp, stop

Properties

SamplesPerTrigger, TriggersExecuted, TriggerType

_			
Purpose	Indicate number of trigg	gers that execute	
Description	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
	of TriggersExecuted. T	any triggers executed by returning the value The trigger number for each trigger executed is a.Trigger field of the EventLog property.	
Characteristics	Usage	AI, AO, common to all channels	
	Access	Read-only	
	Data type	Double	
	Read-only when running	N/A	
Values	The default value is zer	0.	
Examples	Create the analog input	object ai and add one channel to it.	
	ai = analoginput('wi ch = addchannel(ai,1		
	Configure ai to acquire 40,000 samples with five triggers using the default sampling rate of 8000 Hz.		
	set(ai,'TriggerRepea start(ai)	t',4)	
	TriggersExecuted retu	rns the number of triggers executed.	
	ai.TriggersExecuted ans = 5		

See Also

Properties

EventLog

Purpose Indicate the number of times the trigger executes in an operation

Description When working with the session-based interface, the TriggersPerRun property indicates the number of times the specified trigger executes for one acquisition or generation session.

Examples Specify Number of Triggers Per Operation

Create a session and add channels and trigger to the session.

```
s=daq.createSession('ni');
addAnalogInputChannel(s,'Dev1', 0, 'voltage');
addAnalogInputChannel(s,'Dev2', 0, 'voltage');
addTriggerConnection(s,'Dev1/PFI4','Dev2/PFI0','StartTrigger');
```

Display Session's TriggersPerRun Property.

```
s.TriggersPerRun
```

```
ans =
```

1

Set the trigger to run twice during the operation.

s.TriggersPerRun=2

s =

```
Data acquisition session using National Instruments hardware:

Will run 2 times for 1 second (1000 scans) at 1000 scans/second.

Trigger Connection added. (Details)

Number of channels: 2

index Type Device Channel MeasurementType Range Name

1 ai Dev1 ai0 Voltage (Diff) -10 to +10 Volts
```

2 ai Dev2 ai0 Voltage (Diff) -10 to +10 Volts

See Also addTriggerConnection

Purpose Indicates the number of trigger to execute in an operation

Description When working with the session-based interface, the TriggersRemaining property indicates the number of trigger remaining for this acquisition or generation session. This value depends on the number of triggers set using TriggersPerRun.

Examples Display Number of Triggers Remaining in Operation

Create a session and add channels and trigger to the session.

```
s=daq.createSession('ni');
addAnalogInputChannel(s,'Dev1', 0, 'voltage');
addAnalogInputChannel(s,'Dev2', 0, 'voltage');
addTriggerConnection(s,'Dev1/PFI4','Dev2/PFI0','StartTrigger');
```

Display Session's TriggersRemaining Property.

s.TriggersRemaining

ans =

1

See Also addTriggerConnection

TriggerType

Purpose	Specify type of trigger to	execute	
Description	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
	is Immediate, the trigger issued. If TriggerType is the trigger function is is	diate, Manual, or Software. If TriggerType occurs immediately after the start function is Manual, the trigger occurs immediately after sued. If TriggerType is Software, the trigger d trigger condition is satisfied (AI only).	
	Some trigger types requir values. Trigger condition	ce, additional trigger types might be available. re trigger conditions and trigger condition s are specified with the TriggerCondition ndition values are specified with the property.	
	initiated and the Logging	an analog input object, data logging is property is automatically set to On. When a og output object, data sending is initiated and utomatically set to On.	
Characteristics	Usage Access Data type Read-only when running	AI, AO, common to all channels Read/write String Yes	

Values All Supported Hardware

{Immediate}	The trigger executes immediately after start is issued. Pretrigger data cannot be captured.
Manual	The trigger executes immediately after the trigger function is issued.
Software	The trigger executes when the associated trigger condition is satisfied. Trigger conditions are given by the TriggerCondition property. (AI only).

Measurement Computing

HwDigital	The trigger source is an external digital signal (AI only). Pretrigger data cannot be captured.
HwAnalog	The trigger source is an external analog signal (AI only).

National Instruments

HwDigital	The trigger source is an external digital signal. Pretrigger data cannot be captured. Control the trigger source with HwDigitalTriggerSource property. Specify the external digital signal with the TriggerCondition and TriggerConditionValue properties.
HwAnalogChannel	The trigger source is an external analog signal (AI only). To set the trigger source, see TriggerChannel property.
HwAnalogPin	The trigger source is a low-range external analog signal (AI only). Note that HwAnalogPin is supported only for Traditional NIDAQ devices. It is not supported for NIDAQmx devices.

For 1200 Series hardware, HwDigital is the only device-specific TriggerType value for analog input subsystems. Analog output subsystems do not support any device-specific TriggerType values.

Note The Traditional NI-DAQ adaptor will be deprecated in a future version of the toolbox. If you create a Data Acquisition Toolbox[™] object for Traditional NI-DAQ adaptor beginning in R2008b, you will receive a warning stating that this adaptor will be removed in a future release. See the supported hardware page at www.mathworks.com/products/daq/supportedio.html for more information.

See Also Functions

start, trigger

Properties

Logging, Sending, TriggerChannel, TriggerCondition, TriggerConditionValue

Purpose Type of trigger executed

Description When working with the session-based interface, use this read only property displays the type of trigger that the source device executes to synchronize operations in the session. Currently all trigger types re digital.

See Also Functions

addTriggerConnection

Properties

TriggerCondition

Purpose	Indicate device object ty	pe, channel, or line
Description		ne legacy interface on 64–bit MATLAB. See e" to acquire and generate data.
	objects, Type can be Ana	device objects, channels, and lines. For device log Input, Analog Output, or Digital I/O. created, the value of Type is automatically
		value of Type is Channel. For lines, the only ne value is automatically defined when channels e device object.
Characteristics	Usage	AI, AO, common to all channels and per channel; DIO, common to all lines and per line
	Access	Read-only
	Data type	String
	Read-only when running	N/A
Values	Device Objects	
	For device objects, Type	has these possible values:
	Analog Input	The device object type is analog input.
	Analog Output	The device object type is analog output.
	Digital IO	The device object type is digital I/O.
	The value is automatica	lly defined after the device object is created.

Channels and Lines

For channels, the only value of Type is Channel. For lines, the only value of Type is Line. The value is automatically defined when channels or lines are added to the device object.

Туре

Purpose	Display synchronization trigger type		
Description	When working with the session-based interface, this property displays the trigger type		
Characteristics	Usage	AI, AO, common to all channels and per channel; DIO, common to all lines and per line	
	Access	Read-only	
	Data type	String	
	Read-only when running	N/A	
Values	Device Objects		
	For device objects, Type h	as these possible values:	
	Analog Input	The device object type is analog input.	
	Analog Output	The device object type is analog output.	
	Digital IO	The device object type is digital I/O.	
	The value is automatically	y defined after the device object is created.	
	Channels and Lines		
	For channels, the only value of Type is Channel. For lines, the only value of Type is Line. The value is automatically defined when channels or lines are added to the device object.		

Purpose Specify unit of RTD measurement

Description Use this property to specify the temperature unit of the analog input channel with RTD measurement type in the session-based interface.

You can specify temperature values as:

- Celsius (Default)
- Fahrenheit
- Kelvin
- Rankine

Example Change RTD Unit

Change the unit of an RTD channel.

Create a session, add an analog input RTD channel, and display channel properties.

```
s=daq.createSession('ni');
ch=addAnalogInputChannel(s,'cDAQ1Mod7', 0, 'RTD')
```

```
ch =
```

Data acquisition analog input RTD channel 'ai0' on device 'cDAQ1Mod7'

```
Units: Celsius
RTDType: Unknown
RTDConfiguration: Unknown
RO: 'Unknown'
ExcitationCurrent: 0.0005
ExcitationSource: Internal
Coupling: DC
TerminalConfig: Differential
Range: -200 to +660 Celsius
Name: ''
ID: 'ai0'
```

```
Device: [1x1 daq.ni.CompactDAQModule]
MeasurementType: 'RTD'
ADCTimingMode: HighResolution
```

Change the Units property from Celsius to Fahrenheit.

ch.Units='Fahrenheit'

ch =

Data acquisition analog input RTD channel 'ai0' on device 'cDAQ1Mod7':

Units: Fahrenheit RTDType: Unknown RTDConfiguration: Unknown RO: 'Unknown' ExcitationCurrent: 0.0005 ExcitationSource: Internal Coupling: DC TerminalConfig: Differential Range: -328 to +1220 Fahrenheit Name: '' ID: 'ai0' Device: [1x1 daq.ni.CompactDAQModule] MeasurementType: 'RTD' ADCTimingMode: HighResolution

See Also

Class

addAnalogInputChannel

Purpose	Specify engineering unit	ts label
Description		he legacy interface on 64–bit MATLAB. See e" to acquire and generate data.
	0 1	pecifies the engineering units label to associate buld use Units in conjunction with the
Characteristics	Usage Access	AI, AO, per channel Read/write
	Data type	String
	Read-only when running	No
Values	The default value is Vol	ts.
See Also	Properties	
	UnitsRange	

UnitsRange

Purpose	Specify range of data a	as engineering units	
Description	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
	You use UnitsRange to units.	o scale your data to reflect particular engineering	
		ts, the data is scaled while it is extracted from tdata function according to the formula	
	scaled value = (A/D va	lue)(units range)/(sensor range)	
	reflects the gain and p	trained by the InputRange property, which olarity of your analog input channels. The sensor sensorRange property, which reflects the range of your sensor.	
		ects, the data is scaled when it is queued in the ta function according to the formula	
	scaled value = (origina	l value)(output range)/(units range)	
		nstrained by the OutputRange property, which polarity of your analog output channels.	
	For both objects, you c meaningful label with	an also use the Units property to associate a your data.	
Characteristics	Usage	AI, AO, per channel	
	Access	Read/write	
	Data type	Two-element vector of doubles	
	Read-only when running	No	

Values	The default value is determined by the default value of the InputRange or the OutputRange property.
See Also	Functions
	getdata, putdata
	Properties
	InputRange, OutputRange, SensorRange, Units

UserData

Purpose	Store data to associate w	vith device object	
Description			
•		ne legacy interface on 64–bit MATLAB. See " to acquire and generate data.	
	UserData stores data that you want to associate with the device object.		
	Note that if you return analog input object information to the MATLAB workspace using the daqread function, the UserData value is not restored.		
Characteristics	Usage	AI, AO, DIO, common to all channels and lines	
	Access	Read/write	
	Data type	Any type	
	Read-only when running	No	
Values	The default value is an e	empty vector.	
Examples	Create the analog input object ai and add two channels to it.		
	ai = analoginput('nidaq','Dev1'); addchannel(ai,0:1);		
	Suppose you want to access filter coefficients during the acquisition. You can create a structure to store these coefficients, which can then be stored in UserData.		
	coeff.a = 1.0; coeff.b = -1.25; set(ai,'UserData',coe	eff)	

```
Purpose Configure session to use standard sample rates
```

Description Use this property to specify if your audio channel uses standard sample rates supported by your device or a user-specified value. To use non-standard sample rates, set the value to false and set the sessions's Rate to the desired value.

Example Change Acquisition Rate

Add an audio channel to a session and change the UseStandardSampleRates property.

```
s=daq.createSession('directsound');
addAudioInputChannel(s,Audio1,1);
s.UseStandardSampleRates=false
```

s =

Data acquisition session using DirectSound hardware: Will run for 1 second (44100 scans) at 44100 scans/second. Number of channels: 1 index Type Device Channel MeasurementType Range Name 1 audi Audio1 1 Audio -1.0 to +1.0

Specify a different scan rate.

s.Rate=8500

s =
Data acquisition session using DirectSound hardware:
Will run for 1 second (8500 scans) at 8500 scans/second.
Number of channels: 1
index Type Device Channel MeasurementType Range Name
1 audi Audio3 1 Audio -1.0 to +1.0

See Also StandardSampleRates | Rate | addAudioInputChannel | addAudioOutputChannel

Vendor

Purpose	Vendor information associated with session object	
Description	In the session-based interface, the Vendor property displays information about the vendor.	
Values	a daq.Vendor object that represents the vendor associated with the session.	
Examples	Use the daq.getVendors to get information about vendors.	
	s=daq.createSession('ni'); v=s.Vendor	
	v =	
	Data acquisition vendor 'National Instruments':	
	ID: 'ni' FullName: 'National Instruments' AdaptorVersion: '3.3 (R2013a)' DriverVersion: '9.2.3 NI-DAQmx' IsOperational: true	
	Properties, Methods, Events	
	Additional data acquisition vendors may be available as downloadable a Open the Support Package Installer to install additional vendors.	
See Also	daq.createSession	

ZResetCondition

Purpose	Reset condition for Z-indexing
Description	When working with the session-based interface, use the ZResetCondition property to specify reset conditions for Z-indexing of counter Input 'Position' channels. Accepted values are:
	• 'BothHigh'
	• 'BothLow'
	• 'AHigh'
	● 'BHigh'
Example	Change Counter Channel Z Reset Condition
	Create a session and add a counter input Position channel.
	s=daq.createSession('ni'); ch=addCounterInputChannel(s,'cDAQ1Mod5',0,'Position')
	ch =
	Data acquisition counter input position channel 'ctrO' on device 'cDAQ1Mc
	EncoderType: X1 ZResetEnable: 0 ZResetValue: 0

Change the ZResetCondition to BothLow.

ID: 'ctr0'

Device: [1x1 daq.ni.CompactDAQModule]

ZResetCondition: BothHigh TerminalA: 'PFIO' TerminalB: 'PFI2' TerminalZ: 'PFI1' Name: ''

MeasurementType: 'Position'

```
ch.ZResetCondition='BothLow'
ch =
Data acquisition counter input position channel 'ctr0' on device 'cDAG
EncoderType: X1
ZResetEnable: 0
ZResetValue: 0
ZResetValue: 0
ZResetCondition: BothLow
TerminalA: 'PFI0'
TerminalB: 'PFI2'
TerminalE: 'PFI1'
Name: ''
ID: 'ctr0'
Device: [1x1 daq.ni.CompactDAQModule]
MeasurementType: 'Position'
```

See Also addCounterInputChannel

ZResetEnable

Purpose	Enable reset for Z-indexing			
Description	When working with the session-based interface, use the ZResetEnable property to specify if you will allow the Z-indexing to be reset on a counter input 'Position' channel.			
Example	Reset Z Indexing on Counter Channel			
	Create a session and add a counter input Position channel.			
	s=daq.createSession('ni'); ch=addCounterInputChannel(s,'cDAQ1Mod5',0,'Position')			
	ch =			
	Data acquisition counter input position channel 'ctrO' on device 'cDAQ1Mc			
	EncoderType: X1 ZResetEnable: O ZResetValue: O ZResetCondition: BothHigh TerminalA: 'PFIO' TerminalB: 'PFI2' TerminalZ: 'PFI1' Name: '' ID: 'ctrO' Device: [1x1 daq.ni.CompactDAQModule] MeasurementType: 'Position'			
	Change the ZResetEnable to 1.			
	ch.ZResetEnable='BothLow'			
	ch =			
	Data acquisition counter input position channel 'ctrO' on device 'cDAQ1Mc			
	EncoderType: X1			

```
ZResetEnable: 1
ZResetValue: 0
ZResetCondition: BothHigh
TerminalA: 'PFIO'
TerminalB: 'PFI2'
TerminalZ: 'PFI1'
Name: ''
ID: 'ctrO'
Device: [1x1 daq.ni.CompactDAQModule]
MeasurementType: 'Position'
```

See Also Class

addCounterInputChannel

ZResetValue

Purpose	Reset value for Z-indexing			
Description	When working with the session-based interface, use the ZResetValue property to specify the reset value for Z-indexing on a counter input 'Position' channel.			
Example	Specify Z Indexing Value			
	Create a session and add a counter input Position channel.			
	s=daq.createSession('ni'); ch=addCounterInputChannel(s,'cDAQ1Mod5',0,'Position')			
	ch =			
	Data acquisition counter input position channel 'ctrO' on device 'cDAQ1Mc			
	EncoderType: X1 ZResetEnable: O ZResetValue: O ZResetCondition: BothHigh TerminalA: 'PFIO' TerminalB: 'PFI2' TerminalZ: 'PFI1' Name: '' ID: 'ctrO' Device: [1x1 daq.ni.CompactDAQModule] MeasurementType: 'Position'			
	Change the ZResetValue to 62.			
	ch.ZResetValue=62			
	ch =			
	Data acquisition counter input position channel 'ctrO' on device 'cDAQ1Mc			
	EncoderType: X1			

```
ZResetEnable: 1
ZResetValue: 62
ZResetCondition: BothHigh
TerminalA: 'PFIO'
TerminalB: 'PFI2'
TerminalZ: 'PFI1'
Name: ''
ID: 'ctrO'
Device: [1x1 daq.ni.CompactDAQModule]
MeasurementType: 'Position'
```

See Also Class

addCounterInputChannel

ZResetValue

2

Device-Specific Properties — Alphabetical List

BiDirectionalBit property

Purpose	Specify BIOS control register bit that determines bidirectional operation		
Description		ne legacy interface on 64–bit MATLAB. See e" to acquire and generate data.	
	BiDirectionalBit can be 5, 6, or 7. The default value is 5 because most parallel port hardware uses bit 5 of the BIOS control register to determine the direction (input or output) of port 0.		
	If port 0 is unable to input data, you need to configure the BiDirectionalBit value to 6 or 7. Typically, you will not know the bit value required by your port, and some experimentation is required.		
	Note The Parallel Port adaptor will be deprecated in a future version of the toolbox. If you create a Data Acquisition Toolbox [™] object for 'parallel' beginning in R2008b, you will receive a warning stating that this adaptor will be removed in a future release. See the supported hardware page at www.mathworks.com/products/daq/supportedio.html for more information.		
Characteristics			
Characteristics	Vendor	Parallel port	
	Usage	DIO, common to all lines	
	Access	Read/write	
	Data type	Double	
	Read-only when	Yes	

running

Values

 $\{5\},\,6,\,{\rm or}\ 7$

The BIOS control register bit that determines bidirectional operation.

BitsPerSample property

Purpose	Specify number of bits sound card uses to represent samples		
Description	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
	BitsPerSample can be 8, 16, or any value between 17 and 32. The specified number of bits determines the number of unique values a sample can take on. For example, if BitsPerSample is 8, the sound card represents each sample with 8 bits. This means that each sample is represented by a number from 0 through 255. If BitsPerSample is 16, the sound card represents each sample with 16 bits. This means that each sample is represented by a number from 0 through 255.		
	rds configured for full duplex operation, you tsPerSample to 16 bits for both the analog ubsystems. Instead, you need to set one he other subsystem for 16 bits.		
	Note To use the high-resolution (greater than 16 bit) capabilities some sound cards, you might need to configure BitsPerSample to 24 or 32 even if your device does not use that number of bits.		
Characteristics	Vendor Usage Access Data type Read-only when running	Sound cards AI, AO, common to all channels Read/write Double Yes	

Values

 $8, \{16\}, or 17-32$

Represent data with the specified number of bits.

Coupling property

Purpose	Specify input coupling mode		
Description	The Coupling property is visible only if the device you are using supports coupling and the value can be changed. Coupling can be DC of AC. If Coupling is DC, the input is connected directly to the amplifier. If Coupling is AC, a series capacitor is inserted between the input connector and the amplifier.		
	When AC coupling is selected, the DC bias component of the measured signal is filtered out of the waveform by the hardware. This is typically used with dynamic signals such as audio. When DC coupling is selected the complete signal including the DC bias component is measured. This is typically used with slowly changing signals such as temperature or voltage readings.		
Values	{AC}	A series capacitor is inserted between the input connector and the amplifier.	
	DC	The input is connected directly to the amplifier.	
	The default is set to AC for		
	• National Instruments devices that use the NI-DAQmx interface an support AC coupling		
	• National Instruments DSA cards using the Traditional NI-DAQ interface		
	Note The Traditional NI-DAQ adaptor will be deprecated in a future version of the toolbox. If you create a Data Acquisition Toolbox [™] object for Traditional NI-DAQ adaptor beginning in R2008b, you will receive a warning stating that this adaptor will be removed in a future release. See the supported hardware page at www.mathworks.com/products/daq/supportedio.html for more information.		

In all other cards, the default is set to DC.

Examples In the session-based interface, create a session and add an analog input channel.

```
s = daq.createSession('ni');
ch = s.addAnalogInputChannel('Dev4', 'ai1', 'Voltage')
```

Change the coupling type to DC:

ch.Coupling = 'DC';

In the legacy interface, create the analog input object ai for a National Instruments board, and add a hardware channel to it.

```
ai = analoginput('nidaq','Dev1');
addchannel(ai,0);
```

You can return the coupling modes supported by the board with the Coupling field of the daqhwinfo function.

Configure the channel contained by ai to use dc-coupling:

```
ai.Channel.Coupling = 'DC';
ai.Channel.Coupling
ans=
DC
```

ExternalClockDriveLine property

Purpose	Specify which signal is driven by the clock indicating that an analog output update has occurred		
Description	Note You cannot use the legacy interface on 64-bit MATLAB. See "Session-Based Interface" to acquire and generate data. ExternalClockDriveLine defines which pin is pulsed when analog output channels are updated. You can use this property to synchronize the operations of multiple cards over the RTSI bus or via external PFI pins.		
	r		

Note The National Instruments term for this clock is AO Sample Clock.

Characteristics	Vendor	National Instruments
	Usage	AO
	Access	Read/write
	Data type	String
	Read-only when running	Yes
Values	PFI0 to PFI15 RTSI0 to RTSI6	Use specified pin from PFI0 through PFI15. Use specified pin from RTSI0 through RTSI6.
See Also	Properties	
	ExternalClockSource	

Purpose Specify which signal generates an analog output update across channels **Description Note** You cannot use the legacy interface on 64-bit MATLAB. See "Session-Based Interface" to acquire and generate data. ExternalClockSource specifies the pin whose signal is used as the clock to update analog outputs across a group of channels. This property is in effect when the ClockSource property is set to External. **Note** The National Instruments term for this clock is AO Sample Clock. **Characteristics** Vendor National Instruments Usage AO Access Read/write Data type String Read-only when Yes running

See Also	RTSI0 to RTSI6 Properties	Use specified pin from RTSI0 through RTSI6.
Sac Alas	RTSIO to RTSI6	
Values	PFI0 to PFI15	Use specified pin from PFI0 through PFI15.

ClockSource

ExternalSampleClockDriveLine property

Purpose	Specify which signal line is driven by the clock for sample conversions on each channel	
Description	Note You cannot use the legacy interface on 64-bit MATLAB. See "Session-Based Interface" to acquire and generate data. ExternalSampleClockDriveLine defines which pin is pulsed when conversions occur on each channel. Data acquisition cards with simultaneous sample and hold ignore this property. You can use this property to synchronize the operations of multiple cards over the RTSI bus or via external PFI pins.	

Note The National Instruments term for this clock is AI Convert Clock.

Characteristics	Vendor	National Instruments
	Usage	AI
	Access	Read/write
	Data type	String
	Read-only when running	Yes
Values	PFI0 to PFI15	Use specified pin from PFI0 through PFI15.
	RTSI0 to RTSI6	Use specified pin from RTSI0 through RTSI6.
See Also	Properties	
	ExternalSampleClockSou	rce

Purpose	Specify which signal provides clock for sample conversions across channels		
Description		legacy interface on 64–bit MATLAB. See to acquire and generate data.	
	ExternalSampleClockSource specifies the pin whose signal is used as the channel clock for conversions on each channel. This property is in effect when the ClockSource property is set to ExternalSampleCtrl or ExternalSampleAndScanCtrl.		
	Data acquisition cards with property.	th simultaneous sample and hold ignore this	
	Note The National Instru	uments term for this clock is AI Convert Clock.	
Characteristics	Vendor	National Instruments	
	Usage	AI	
	1 00000	Bood/write	

Characteristics	Vendor	National Instruments
	Usage	AI
	Access	Read/write
	Data type	String
	Read-only when running	Yes
Values	PFI0 to PFI15	Use specified pin from PFI0 through PFI15.
	RTSI0 to RTSI6	Use specified pin from RTSI0 through

RTSI6.

ExternalSampleClockSource property

See Also

Properties

ClockSource, ExternalScanClockSource

Purpose	Specify which signal is driven by the clock indicating the start of a series of conversions across channels		
Description			
• Note You cannot use t	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
	ExternalScanClockDriveLine defines which pin is pulsed when a		

series of conversions across channels start. You can use this property to synchronize the operations of multiple cards over the RTSI bus or via external PFI pins.

Note The National Instruments term for this clock is AI Sample Clock.

Characteristics	Vendor	National Instruments
	Usage	AI
	Access	Read/write
	Data type	String
	Read-only when running	Yes
Values	PFI0 to PFI15 RTSI0 to RTSI6	Use specified pin from PFI0 through PFI15. Use specified pin from RTSI0 through RTSI6.
See Also	Properties ExternalScanClockSou	rce

ExternalScanClockSource property

Purpose	Specify which signal starts series of conversions across channels		
Description	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
	ExternalScanClockSource specifies the pin whose signal is used as the scan clock to initiate conversions across a group of channels. This property is in effect when the ClockSource property is set to ExternalScanCtrl or ExternalSampleAndScanCtrl.		
	Note The National In	nstruments term for this clock is AI Sample Clock.	
Characteristics	Vendor Usage	National Instruments AI	
	Access	Read/write	
	Data type	String	
	Read-only when running	Yes	
Values	PFI0 to PFI15	Use specified pin from PFI0 through PFI15.	
	RTSI0 to RTSI6	Use specified pin from RTSI0 through RTSI6.	
See Also	Properties		
	ClockSource, Extern	alSampleClockSource	

Purpose	Specify which signal line is driven with a pulse when data acquisition or generation starts		
Description	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
	ExternalTriggerDriveLine defines which pin is pulsed when a data acquisition or generation starts. You can use this property to synchronize the operations of multiple cards over the RTSI bus or via external PFI pins.		
Characteristics	Vendor Usage Access Data type Read-only when running	National Instruments AI Read/Write String Yes	
Values	PFI0 to PFI15 RTSI0 to RTSI6	Use specified pin from PFI0 through PFI15. Use specified pin from RTSI0 through RTSI6.	
See Also	Properties HwDigitalTriggerSour	rce	

HwDigitalTriggerSource property

Purpose	Specify which signal initia	tes data acquisition
Description	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.	
		defines which pin is used to initiate a data gerType property is set to HwDigital.
Characteristics	Vendor	National Instruments
	Usage	AI, AO
	Access	Read/write
	Data type	String
	Read-only when running	Yes
Values	PFI0 to PFI15	Use specified pin from PFI0 through PFI15.
	RTSI0 to RTSI6	Use specified pin from RTSI0 through RTSI6.
See Also	Properties TriggerType	

Purpose Specify number of external multiplexer devices connected

Description

Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.

NumMuxBoards specifies the number of AMUX-64T multiplexer devices connected to your hardware. NumMuxBoards can be 0, 1, 2, or 4. If you are using a 1200 Series board, then NumMuxBoards can only be 0.

Characteristics	Vendor	National Instruments Traditional NI-DAQ devices
	Usage	AI, common to all channels
	Access	Read/write
	Data type	Double
	Read-only when running	No

Note The Traditional NI-DAQ adaptor will be deprecated in a future version of the toolbox. If you create a Data Acquisition ToolboxTM object for Traditional NI-DAQ adaptor beginning in R2008b, you will receive a warning stating that this adaptor will be removed in a future release. See the supported hardware page at www.mathworks.com/products/daq/supportedio.html for more information.

Values

 $\{0\},\,1,\,2,\,{\rm or}\ 4$

The number of AMUX-64T multiplexer devices connected.

OutOfDataMode property

Purpose	Specify how value held b	by analog output subsystem is determined
Description		ne legacy interface on 64–bit MATLAB. See e" to acquire and generate data.
	Session-Dased Interfact	e to acquire and generate data.
	the hardware typically h	atput to the analog output (AO) subsystem, nolds a value. For National Instruments and ng devices, the value held is determined by
	Hold, then the last valu OutOfDataMode is Defau	Hold or DefaultValue. If OutOfDataMode is e output is held by the AO subsystem. If ultValue, then the value specified by the property is held by the AO subsystem.
Characteristics	Vendor	Measurement Computing, National Instruments
	Usage	AO, common to all channels
	Access	Read/write
	Data type	String
	Read-only when running	Yes
Values	{Hold}	Hold the last output value.
	DefaultValue	Hold the value specified by DefaultChannelValue.

Examples Create the analog output object **ao** and add two channels to it.

```
ao = analogoutput('nidaq','Dev1');
addchannel(ao,0:1);
```

You can configure **ao** so that when queued data is finished being output, a value of 1 volt is held for both channels.

ao.OutOfDataMode = 'DefaultValue'; ao.Channel.DefaultChannelValue = 1.0;

See Also Properties

DefaultChannelValue

PortAddress property

Purpose	Indicate base address of pa	arallel port
Description	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.	
The PC supports up to three parallel ports that are assi LPT1, LPT2, and LPT3. You can use any of these stand long as they use the usual base addresses, which are (in and 3BC, respectively.		ou can use any of these standard ports as
Additional ports, or standard ports not assigned the usual base addresses, are not accessible by the toolbox. Note that most PCs support MATLAB will include a single parallel printer port with address 378 (LPT1).		le by the toolbox. Note that most PCs that
	Note The Parallel Port adaptor will be deprecated in a future version of the toolbox. If you create a Data Acquisition Toolbox [™] object for 'parallel' beginning in R2008b, you will receive a warning stating that this adaptor will be removed in a future release. See the supported hardware page at www.mathworks.com/products/daq/supportedio.html for more information.	
Characteristics	Vendor	Parallel port
	Usage	DIO, common to all lines
	Access	Read only
	Data type	String
	Read-only when running	Yes
Values	The value is automatically	defined when the object is created.

Examples Create a digital I/O object for parallel port LPT1 and return the
PortAddress value.
dio = digitalio('parallel','LPT1');
get(dio,'PortAddress')
ans =
0x378

The returned value indicates that LPT1 uses the usual base address.

StandardSampleRates property

	nple rates snap to small set of standard values, rate to any allowed value	
Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
Off, then it is possible to bounds supported by the bound is 8.000 kHz, whil sound cards, an upper bo	an be On of Off. If StandardSampleRates is set the sample rate to any value within the hardware. For most sound cards, the lower e the upper bound is 44.1 kHz. For newer bound of 96.0 kHz might be supported. The ounded up to the next integer value.	
to a small set of standard 11.025 kHz, 22.050 kHz, that is within one percen snaps to that standard va within one percent of a st	is On, then the available sample rates snap I values. The standard values are 8.000 kHz, and 44.100 kHz. If you specify a sampling rate t of a standard value, then the sampling rate alue. If you specify a sampling rate that is not tandard value, then the sampling rate rounds d value.	
-	rdSampleRates value, if you specify a sampling llowed limits, then an error is returned.	
Vendor Usage Access Data type Read-only when running	Sound cards AI, AO, common to all channels Read/write String Yes	
	or if you can set sample i Note You cannot use th "Session-Based Interface" StandardSampleRates can Off, then it is possible to bounds supported by the bound is 8.000 kHz, while sound cards, an upper bore specified sample rate is r If StandardSampleRates to a small set of standard 11.025 kHz, 22.050 kHz, that is within one percent snaps to that standard was within one percent of a standard Regardless of the Standar Regardless of the Standar Regardless of the Standar Vendor Usage Accesss Data type Read-only when	

Values	On	The sample rate can be set only to a small set of standard values.
	{Off}	If supported by the hardware, the sample rate can be set to any value within the allowed bounds, up to a maximum of 96.0 kHz.

TransferMode property

Specify how data is transferred from data acquisition device to system memory

Description

Purpose

Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.

For National Instruments NI-DAQmx hardware, this property is ignored. The device driver automatically selects the most efficient transfer mode available.

For National Instruments Traditional NI-DAQ hardware, TransferMode can be Interrupts or SingleDMA for both analog input and analog output subsystems. If TransferMode is Interrupts, then data is transferred from the hardware first-in, first-out memory buffer (FIFO) to system memory using interrupts. If TransferMode is SingleDMA, then data is transferred from the hardware FIFO to system memory using a single direct memory access (DMA) channel. Some boards also support a TransferMode of DualDMA for analog input subsystems. For example, the AT-MIO-16E-1 board supports this transfer mode. If TransferMode is DualDMA, then data is transferred from the hardware FIFO to system memory using two DMA channels. Depending on your system resources, data transfer via interrupts can significantly degrade system performance.

For Measurement Computing hardware, TransferMode can be Default, InterruptPerPoint, DMA, InterruptPerBlock, or InterruptPerScan. If TransferMode is Default, the transfer mode is automatically selected by the driver based on the board type and the sampling rate. If TransferMode is InterruptPerPoint, a single conversion is transferred for each interrupt. You should use this property value if your sampling rate is less the 5 kHz or you specify a small block size for memory buffering (as defined by the BufferingConfig property). If TransferMode is InterruptPerBlock, a block of data is transferred for each interrupt. You should use this property value if your sampling rate is greater than 5 kHz and you are using a board that has a fast maximum sampling rate. Note that a data block is defined by the board, and usually corresponds to half the FIFO size. If TransferMode is InterruptPerScan, data is not transferred until the entire scan is complete. This can only be used when the number of points acquired is less than or equal to the FIFO size. You should use this mode if your sampling rate is higher than the maximum continuous scan rate of the data acquisition device.

Note If your sampling rate is greater than ~ 5 kHz, you should avoid using interrupts if possible. The recommended TransferMode setting for your application will be described in your hardware documentation, and depends on the specific board you are using and your platform configuration.

Characteristics	Vendor	Measurement Computing, National Instruments
	Usage	AI, AO, common to all channels
	Access	Read/write
	Data type	String
	Read-only when running	Yes
Values	Advantech	

{InterruptPerPoint}	Transfer single data points using interrupts.
InterruptPerBlock	Transfer a block of data using interrupts (AI only).

Measurement Computing

{Default}	The transfer mode is automatically selected by the driver based on the board type and the sampling rate.
InterruptPerPoint	Transfer single data points using interrupts.
DMA	Transfer data using a single DMA channel (AI only).
InterruptPerBlock	Transfer a block of data using interrupts (AI only).
InterruptPerScan	Transfer all data when the acquisition is complete (AI only).

National Instruments

Interrupts	Transfer data using interrupts.
SingleDMA	Transfer data using a single DMA channel.
DualDMA	Transfer data using two DMA channels.

This default property value is supplied by the driver. For most devices that support data transfer via interrupts and DMA, SingleDMA is the default value.

Note The Traditional NI-DAQ adaptor will be deprecated in a future version of the toolbox. If you create a Data Acquisition Toolbox[™] object for Traditional NI-DAQ adaptor beginning in R2008b, you will receive a warning stating that this adaptor will be removed in a future release. See the supported hardware page at www.mathworks.com/products/daq/supportedio.html for more information.

Examples Set the TransferMode property for a National Instruments board before acquiring data.

```
ai = analoginput('nidaq', 1);
set(ai, 'TransferMode', 'SingleDMA');
addchannel(ai, 1:2);
softscope(ai)
```

TransferMode

Block Reference

Analog Input Analog Input (Single Sample) Analog Output Analog Output (Single Sample) Digital Input Digital Output

Analog Input

Purpose	Acquire data from multiple analog channels of data acquisition device
Library	Data Acquisition Toolbox
	Note You cannot use certain devices with Data Acquisition Toolbox Simulink [®] blocks. Refer to the Supported Hardware page to see if your device supports Simulink use.
Description	The Analog Input block opens, initializes, configures, and controls an analog data acquisition device. The opening, initialization, and configuration of the device occur once at the start of the model's execution. During the model's run time, the block acquires data either synchronously (deliver the current block of data the device is providing) or asynchronously (buffer incoming data).
	Note You need a license for both Data Acquisition Toolbox and Simulink software to use this block.
	The block has no input ports. It has one or more output ports, depending on the configuration you choose in the Source Block Parameters dialog box. The following diagram shows the block configured with one port for both channels and with one port for each channel, in the case of a device that has two channels.
	winsound 0 NVIDIA(R) n > NVIDIA(R) n 8000 samples/sec 8000 samples/sec Right >
	Analog Input - one port Analog Input - two ports

Use the Analog Input block to incorporate live measured data into Simulink for:

- System characterization
- Algorithm verification
- System and algorithm modeling
- Model and design validation
- design control

Note You can use the Analog Input block only with devices that support clocked acquisition. The block will error out when the model is run with a device that does not support clocking. To acquire data using devices that do not support clocking, use the Analog Input (Single Sample) block.

You can use this block for signal applications by using it with basic Simulink and DSP System Toolbox[™].

You can use the Analog Input block either synchronously or asynchronously. Select the acquisition mode in the Source Block Parameters dialog box.

The following diagram shows the basic analog input usage scenario, in which you would:

- Acquire data at each time step or once per model execution.
- Analyze the data, or use it as input to a system in the model.
- Optionally display results.

For an example of creating a model using the Analog Input block, see Example: Bringing Analog Data into a Model.

Other Supported Features

The Analog Input block supports the use of Simulink Accelerator[™] mode. This feature speeds up the execution of Simulink models.

Note You need the C++ Compiler to use Simulink Accelerator mode.

The block supports the use of model referencing. This feature lets your model include other Simulink models as modular components.

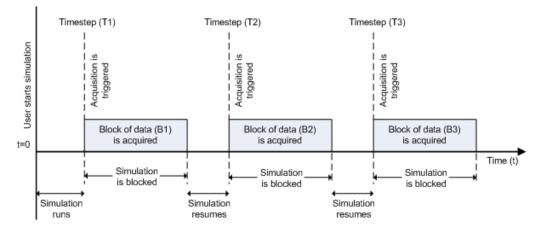
For more information on these features, see the Simulink documentation.

Dialog Box

Use the Source Block Parameters dialog box to select your acquisition mode and to set other configuration options.

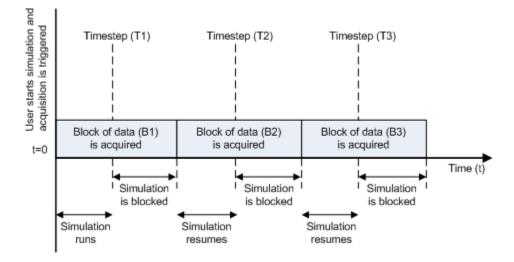
Source Block P	Parame	ters: Analog Input						
Analog Input								
Acquire block of a every simulation ti		multiple analog channels (of a data acquisitio	on device				
Parameters								
- Acquisition Mod	le							
Asynchronous - Initiates the acquisition when simulation starts. The simulation runs while data is acquired into a FIFO buffer.								
C Synchronou	ıs - Initia will n	tes the acquisition at each ot continue until all data is	time step. The sir acquired.	mulation				
Device: winsoun	d 0 (Sou	ndMAX HD Audio)		•				
Hardware sample	rate (sar	mples/second): 8000						
		00 samples per secon	d.					
Block size: 1								
Input type: AC-Co	oupled			-				
Channels:			Select All	Unselect All				
Hardware Ch	annel	Name	Input Range					
		l Left	-1V to +1V	•				
		2 Right	-1V to +1V	•				
Cutputs								
Number of port:	·	II hardware channels		<u> </u>				
Signal type:	Samp	e-based		_				
Data type:	double	9		_				

Acquisition Mode

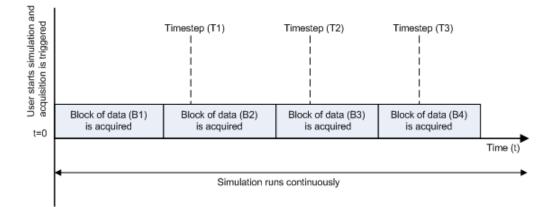

Asynchronous

Initiates the acquisition when the simulation starts. The simulation runs while data is acquired into a FIFO (First in, First out) buffer. The acquisition is continuous; the block buffers data while outputting a scan/frame of data at each time step.

Synchronous


Initiates the acquisition at each time step. The simulation will not continue until the requested block of data is acquired. This is unbuffered input; the block will synchronously output the latest scan/frame of data at each time step.

The following diagrams show the difference between synchronous and asynchronous modes for the Analog Input block.


Synchronous Analog Input

At the first time step (T1), the acquisition is initiated for the required block of data (B1). The simulation does not continue until B1 is completely acquired.

Asynchronous Analog Input - Scenario 1

Scenario 1 shows the case when simulation speed outpaces data acquisition speed. At the first time step (T1), the required block of data (B1) is still being acquired. Therefore, the simulation does not continue until B1 is completely acquired.

Asynchronous Analog Input – Scenario 2

Scenario 2 shows the case when data acquisition speed outpaces simulation speed. At the first time step (T1), the required block of data (B1) has been completely acquired. Therefore, the simulation runs continuously.

Note Several factors, including device hardware and model complexity, can affect the simulation speed, causing both scenarios 1 and 2 to occur within the same simulation.

Options

Device

The data acquisition device from which you want to acquire data. The items in the list vary, depending on which devices you have connected to your system. Devices in the list are specified by adaptor/vendor name and unique device ID, followed by the name of the device. The first available device is selected by default.

Hardware sample rate

The rate at which samples are acquired from the device, in samples per second. This is the sampling time for the hardware. The default is defined when a device is selected.

The sample rate must be a positive real number, and be within the range allowed for the selected hardware.

Block size

The desired number of data samples to output at each time step for each channel. Block size corresponds to the SamplesPerTrigger property for an analog input device. The default value for block size depends on the hardware selected. It must be a positive integer, and be within the range allowed for the selected hardware.

Input type

Specifies the hardware channel configuration, such as single-ended, differential, etc. The input type is defined by the capabilities of the selected device.

Channels

The channel configuration table lists your device's hardware channels and lets you configure them. Use the check boxes and selection buttons to specify which channels to acquire data from. These parameters are specified for each selected channel:

Hardware Channel — Displays the hardware channel ID specified by the device. The **Hardware Channel** column is read only and the parameters are defined when the device is selected.

The **Name** — Specifies the channel name. By default the table displays any names provided by the hardware, but you can edit the names. For example, if the device is a sound card with two channels, you can name them Left and Right.

Input Range — Specifies the input ranges available for each channel supported by the hardware, and is defined when a device is selected.

Outputs

Number of ports

Select 1 for all hardware channels (default) or 1 per hardware channel.

Using **1** for all hardware channels outputs data from a single port as a matrix, with a size of Block size x Number of Channels selected.

Using **1 per hardware channel** outputs data from N ports, where N is equal to the number of selected channels. Each output port will be a column vector with a size of Block size x 1. For naming, each output port will use the channel name if one was specified, or otherwise use [HWChannel + channel ID], for example, HWChannel2.

Signal type

Select **Sample-based** or **Frame-based**. This option determines whether the signal type is sample-based or frame-based. **Sample-based** is the default.

Note The **Frame-based** option works only if you have the DSP System Toolbox software installed.

Data type

Select your data type to output from the block. The Analog Input block supports double and native data types, as supported by the hardware. double is the default. Native data types will be dynamically populated in this list based on the hardware that is selected. For example, if int16 is a native data type of a specific hardware device, then one of the entries for **Data type** will be int16 (native).

See Also Analog Input (Single Sample), Analog Output, Analog Output (Single Sample), Digital Input, Digital Output

Analog Input (Single Sample)

Purpose	Acquire single sample from multiple analog channels of data acquisit device							
Library	Data Acquisition Toolbo	X						
		to the Suppor	s with Data Acquisition Toolbox rted Hardware page to see if your					
Description	The Analog Input (Single Sample) block opens, initializes, configures, and controls an analog data acquisition device. The opening, initialization, and configuration of the device occur once at the start of the model's execution. The block acquires a single sample every sample time, synchronously from the device, during the model's run time.							
	Note You need a licens Simulink software to us		ata Acquisition Toolbox and					
	on the configuration you box. The following diag	choose in th cam shows th ith one port	ne or more output ports, depending e Source Block Parameters dialog e block configured with one port for each channel, in the case of					
	mee 1 PMD-1208FS	HWChannel0> mcc1 PMD-1208FS HWChannel1>						
	Analog Input (Single Sample) - one po	rt	Analog Input (Single Sample) - two ports					

Use the Analog Input (Single Sample) block to incorporate live measured data into Simulink for:

- System characterization
- Algorithm verification
- System and algorithm modeling
- Model and design validation
- Controls design

Note You can use Analog Input (Single Sample) block only with devices that support single sample acquisition. The block will error out when the model is run with a device that does not support single sample acquisition. To acquire data from devices that do not support acquisition of a single sample (like devices designed for sound and vibration), use the Analog Input block.

You can use the Analog Input (Single Sample) block for signal applications by using it with basic Simulink and DSP System Toolbox.

Other Supported Features

The Analog Input (Single Sample) block supports the use of Simulink Accelerator mode. This feature speeds up the execution of Simulink models.

Note You need the C++ Compiler to use Simulink Accelerator mode.

This block supports the use of model referencing. This feature lets your model include other Simulink models as modular components.

For more information on these features, see the Simulink documentation.

Analog Input (Single Sample)

Dialog Box

Use the Source Block Parameters dialog box to select your device and to set other configuration options.

Para	ameters				
De	vice: mcc1	(PMD-1208FS)		•	
Inp	ut type: Differ	ential		-	
Cha	annels:		Select All	Unselect All	
	Hardware Channel	Name	Input Range	<u> </u>	
7	-	0	-20V to +20V	•	
~		1	-20V to +20V	•	
~		2	-20V to +20V	-20V to +20V 🔹	
~		3	-20V to +20V		

Device

The data acquisition device from which you want to acquire data. The items in the list vary, depending on which devices you have connected to your system. Devices in the list are specified by adaptor/vendor name and unique device ID, followed by the name of the device. The first available device is selected by default.

Input type

Specifies the hardware channel configuration, such as single-ended, differential, etc. When you select a device, the device capability defines the available values for input type.

Channels

The channel configuration table lists your device's hardware channels and lets you configure them. Use the check boxes and selection buttons to specify which channels to acquire data from. These parameters are specified for each selected channel:

Hardware Channel — Displays the hardware channel ID specified by the device. The **Hardware Channel** column is read-only and the parameters are defined when the device is selected.

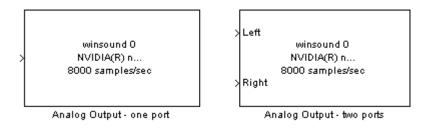
Name — Specifies the channel name. By default the table will display any names provided by the hardware, but you can edit the names. For example, if you are using a device to acquire indoor and outdoor temperature from two channels, you can name them IndoorTemp and OutdoorTemp.

Input Range — Specifies the input ranges available for each channel supported by the hardware, and the available values are defined when a device is selected.

Number of ports

Select 1 for all hardware channels (default) or 1 per hardware channel.

Using **1** for all hardware channels, outputs data from a single port as a matrix, with a size of [1 x Number of Channels selected].


Using **1 per hardware channel**, outputs data from N ports, where N is equal to the number of selected channels. Each output port will be a scalar value. For naming, each output port will use the channel name if one was specified, or otherwise use ["HWChannel" + channel ID], for example, HWChannel2.

Block sample time

Specifies the sample time of the block during the simulation. This is the rate at which the block is executed during simulation. The default value is 0.01 (seconds).

See Also Analog Input, Analog Output, Analog Output (Single Sample), Digital Input, Digital Output

Purpose	Output data to multiple analog channels of data acquisition device							
Library	Data Acquisition Toolbox							
	Note You cannot use certain devices with Data Acquisition Toolbox Simulink blocks. Refer to the Supported Hardware page to see if your device supports Simulink use.							
Description	The Analog Output block opens, initializes, configures, and controls an analog data acquisition device. The opening, initialization, and configuration of the device occur once at the start of the model's execution. During the model's run time, the block outputs data to the hardware either synchronously (outputs the block of data as it is provided) or asynchronously (buffers output data).							
	Note You need a license for both Data Acquisition Toolbox and Simulink software to use this block.							
	The block has one or more input ports, depending on the option you choose in the Sink Block Parameters dialog box. It has no output ports. The following diagram shows the block configured with one port for both channels and with one port for each channel, in the case of a device that has two channels selected.							

Note You can use the Analog Output block only with devices that support clocked generation. The block will error out when the model is run with a device that does not support clocking. To send data using devices that do not support clocking, use the Analog Output (Single Sample) block.

The Analog Output block inherits the sample time from the driving block connected to the input port. The valid data types of the signal at the input port are double or native data types supported by the hardware.

Other Supported Features

The Analog Output block supports the use of Simulink Accelerator mode. This feature speeds up the execution of Simulink models.

Note You need the C++ Compiler to use Simulink Accelerator mode.

The block supports the use of model referencing. This feature lets your model include other Simulink models as modular components.

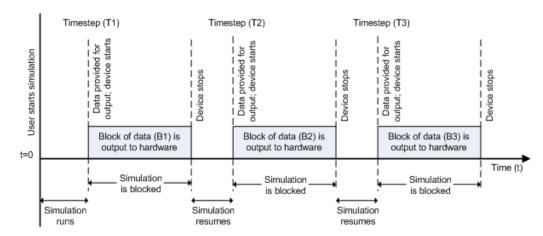
For more information on these features, see the Simulink documentation.

Dialog Box

Use the Sink Block Parameters dialog box to select your acquisition mode and to set other configuration options.

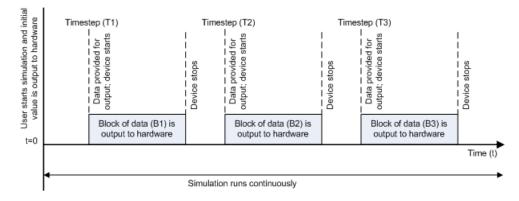
		rs: Analog (συτρυτ				
Analog Output							
Output block of da every simulation tir			channels of a d	ata acquisi	tion devi	ice	
Parameters							
Cutput Mode							
Device: winsound	The s - Initi The	e simulation ru ates data outp simulation wil undMAX HD /	ns while data is out to the hardw I not continue ru	output from are at each	i a FIFO i time ste	buffer. ep.	•
Hardware output r			· · ·				
Actual rate will			· · ·		[
			· · ·	Selec	et All	Unsele	et All
Actual rate will	l be 8		· · ·		et All		ect All
Actual rate will Channels:	i be 8 annel	000 sample:	s per second.	Range			ect All
Actual rate will Channels: Hardware Cha	ibe 8 annel 1	000 sample: Name	s per second. Output	Range ·1V 💌	Initial \		et All
Actual rate will Channels: Hardware Cha	ibe 8 annel 1	000 sample: Name Left	S per second. Output -1V to 4	Range ·1V 💌	Initial \ N/A		ect All
Actual rate will Channels: Hardware Cha	innel 1	000 sample: Name Left Right	Output -1V to +	Range ·1V 💌	Initial \ N/A		ect All

Output Mode

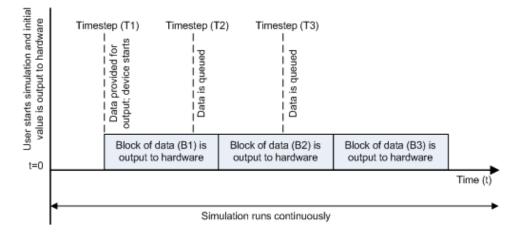

Asynchronous

Initiates data output to the hardware when simulation starts. The simulation runs while data is output from a FIFO (First In, First Out) buffer. This mode buffers and outputs data from the block, letting you perform a frame-based or sample-based output.

Synchronous


Initiates data output to the hardware at each time step. The simulation will not continue running until the current block of data is output. In synchronous mode, the block synchronously outputs a vector or frame of samples provided at each time step.

The following diagrams show the difference between synchronous and asynchronous analog output.


Synchronous Analog Output

At the first time step (T1), data output is initiated and the corresponding block of data (B1) is output to the hardware. The simulation does not continue until B1 is output completely.

Asynchronous Analog Output – Scenario 1

Scenario 1 shows the case when data output speed outpaces simulation speed. At the first time step (T1), data output is initiated and the corresponding block of data (B1) is output to the hardware. The simulation runs continuously in this mode.

Asynchronous Analog Output - Scenario 2

Scenario 2 shows the case when simulation speed outpaces data acquisition speed. At the first time step (T1), data output is initiated and the corresponding block of data (B1) is output to the hardware. Data is queued at successive time steps and is output to the hardware once the previous block completes. The simulation runs continuously in this mode.

Note Several factors, including device hardware and model complexity, can affect the simulation speed, causing both scenarios 1 and 2 to occur within the same simulation.

Options

Device

The data acquisition device to which you want to output data. The items in the list vary, depending on which devices you have connected to your system. Devices in the list are specified by adaptor/vendor name and unique device ID, followed by the name of the device. The first available device is selected by default.

Hardware output rate

The rate at which samples are output to the device, in samples per second. This output rate for the hardware is defined when a device is selected. The output rate specified must be within the range supported by the selected device.

Channels

The channel configuration table lists your device's hardware channels and lets you configure them. Use the check boxes and selection buttons to specify which channels to send data to.

Hardware Channel — Displays the channel ID specified by the device, and is read only.

Name — specifies the channel name. By default the table displays any names provided by the hardware, but you can edit the names. For example, if the device is a sound card with two channels, you can name them Left and Right.

Output Range — Specifies the output ranges available for each channel supported by the hardware, and is defined by the selected device.

Initial Value — Specifies the initial value to be output at the start of the simulation, if you are using Asynchronous mode. The default value is 0. In Synchronous mode, the **Initial Value** column does not appear in the table.

Note For AC-coupled devices like a sound card, this column is not used and is read only.

Number of ports

Select 1 for all hardware channels (default) or 1 per hardware channel.

Using **1** for all hardware channels inputs data from a single port as a matrix, with a size of [S x Number of Channels selected], where S is number of samples provided as input.

Using **1 per hardware channel** inputs data from N ports, where N is equal to the number of selected channels. Each input port will be a column vector with a size of [S x 1], where S is the number of samples provided as an input. For naming, each output port will use the channel name if one was specified, or otherwise use ["HWChannel" + channel ID], for example, HWChannel2.

See Also

Analog Input, Analog Input (Single Sample), Analog Output (Single Sample), Digital Input, Digital Output

Purpose	Output single sample to multiple analog channels of data acquisition device							
Library	Data Acquisition Toolbox							
	Note You cannot use certain devices with Data Acquisition Toolbox Simulink blocks. Refer to the Supported Hardware page to see if your device supports Simulink use.							
Description	The Analog Output (Single Sample) block opens, initializes, configures, and controls an analog data acquisition device. The opening, initialization, and configuration of the device occur once at the start of the model's execution. The block outputs a single sample every sample time, synchronously to the hardware, during the model's run time.							
	Note You need a license for both Data Acquisition Toolbox and Simulink software to use this block.							
	choose in the Sink Block Param The following diagram shows th	at ports, depending on the option you neters dialog box. It has no output ports. ne block configured with one port for both each channel, in the case of a device that						
	nidaq Dev1 > PCI-6251	> HWChannelO nidaq Dev1 PCI-6251 > HWChannel1						
	Analog Output (Single Sample) - one port	Analog Output (Single Sample) - two ports						

Note You can use Analog Output (Single Sample) block only with devices that support single sample output. The block will error out when the model is run with a device that does not support single sample acquisition. To send data using devices that do not support acquisition of a single sample (like devices designed for sound and vibration), use the Analog Output block.

The Analog Output (Single Sample) block inherits the sample time from the driving block connected to the input port. The valid data type of the signal at the input port is double.

Other Supported Features

The Analog Output (Single Sample) block supports the use of Simulink Accelerator mode. This feature speeds up the execution of Simulink models.

Note You need the C++ Compiler to use Simulink Accelerator mode.

The Analog Output (Single Sample) block supports the use of model referencing. This feature lets your model include other Simulink models as modular components.

For more information on these features, see the Simulink documentation.

Dialog Box

Use the Sink Block Parameters dialog box to select your device and to set other configuration options.

nidaq Dev1 (PCI-62			1000
' els:	2011	Select All Unselect	All
rdware Channel	Name	Output Range	_
0		-10V to +10V 💌	
1		-10V to +10V	
	rdware Channel	rdware Channel Name	rdware Channel Name Output Range 0 -10V to +10V

Device

The data acquisition device to which you want to output data. The items in the list vary, depending on which devices you have connected to your system. Devices in the list are specified by adaptor/vendor name and unique device ID, followed by the name of the device. The first available device is selected by default.

Channels

The channel configuration table lists your device's hardware channels and lets you configure them. Use the check boxes and

selection buttons to specify which channels to acquire data from. These parameters are specified for each selected channel:

Hardware Channel — Displays the hardware channel ID specified by the device. The **Hardware Channel** column is read-only and the parameters are defined when the device is selected.

Name — Specifies the channel name. By default the table will display any names provided by the hardware, but you can edit the names. For example, if you are sending data and trigger signals to an output device, you can name them Data and TriggerStatus.

Output Range — Specifies the output ranges available for each channel supported by the hardware, and the available values are defined when a device is selected.

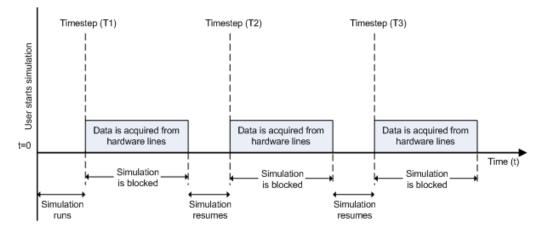
Number of ports

Select 1 for all hardware channels (default) or 1 per hardware channel.

Using **1** for all hardware channels, receives data from a single port as a matrix, with a size of [Block size x Number of Channels selected].

Using **1 per hardware channel**, receives data from N ports, where N is equal to the number of selected channels. Each input port will be a scalar. For naming, each output port will use the channel name if one was specified, or otherwise use ["HWChannel" + channel ID], for example, HWChannel2.

See Also Analog Input, Analog Input (Single Sample), Analog Output, Digital Input, Digital Output


Purpose	Acquire latest set of values from multiple digital lines of data acquisition device					
Library	Data Acquisition Toolbox					
	Note You cannot use certain devices with Data Acquisition Toolbox Simulink blocks. Refer to the Supported Hardware page to see if your device supports Simulink use.					
Description	The Digital Input block synchronously outputs the latest scan of data available from the digital lines selected at each simulation time step. It acquires unbuffered digital data, and the data delivered is a binary vector.					
	Note You need a license for both Data Acquisition Toolbox and Simulink software to use this block.					
	The block has no input ports. It has one or more output ports, depending on the option you choose in the Source Block Parameters dialog box. The following diagram shows the block configured with one port for all lines and with one port for each line, in the case of a device that has 17 lines selected.					

Digital Input - one port for each line

The block inherits the sample time of the model.

The output data is always a binary vector (binvec), i.e., a vector of logical values.

Digital input acquisition is done synchronously. The following diagram shows synchronous digital input.

At the first time step (T1), data is acquired from the selected hardware lines. The simulation does not continue until data is read from all lines.

Other Supported Features

The Digital Input block supports the use of Simulink Accelerator mode. This feature speeds up the execution of Simulink models.

Note You need the C++ Compiler to use Simulink Accelerator mode.

The block supports the use of model referencing. This feature lets your model include other Simulink models as modular components.

For more information on these features, see the Simulink documentation.

Digital Input

Dialog Box

Use the Source Block Parameters dialog box to set configuration options.

	ameters vice: parallel I	LPT1 (PC Para	allel Port	Hardware)	.
Line	,.		[Select All	Unselect All
	Hardware Port ID	Hardware Line ID	Name		
₽	0	0	Pin2		
	0	1	Pin3		
7	0	2	Pin4		
	0	3	Pin5		–

Device

The data acquisition device from which you want to acquire data. The items in the list vary, depending on which devices you have connected to your system. Devices in the list are specified by adaptor/vendor name and unique device ID, followed by the name of the device. The first available device is selected by default.

Lines

The line configuration table lists your device's lines and lets you configure them. The table lists all the lines that can be configured for input. Use the check boxes and selection buttons to specify which lines to acquire data from.

Hardware Port ID

Specifies the ID for each hardware port. This is automatically detected and filled in by the selected device, and is read only.

Hardware Line ID

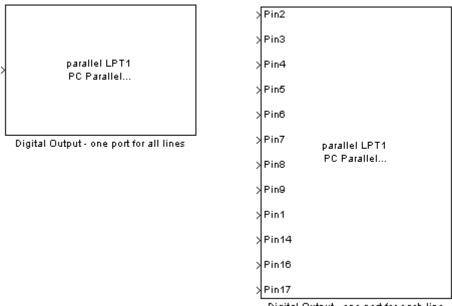
Specifies the ID of the hardware line. This is automatically detected and filled in by the selected device, and is read only.

Name

Specifies the hardware line name. This is automatically detected and filled in from the hardware, though you can edit the name.

Number of ports

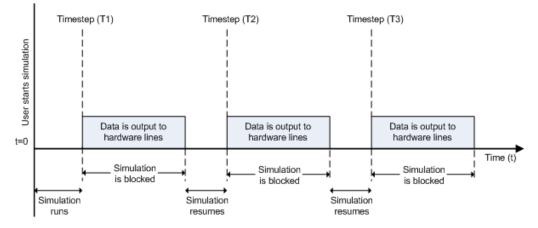
Select 1 for all hardware lines (default) or 1 per hardware line.


Using **1** for all hardware lines means that the block will have only one output port for all of the lines that are selected in the table. Data must be [S x number of lines], where S is the number of samples. Data will be a binary vector (binvec).

Using **1 per hardware line** means the block will have one output port per selected line. The name of each output port is the name specified in the table for each line. If no name is provided, the name is "Port" + HwPort ID + "Line" + Line ID. For example, if line 2 of hardware port 3 is selected, and you did not specify a name in the line table, Port3Line2 appears in the block. Data will be [1 x 1].

See Also Analog Input, Analog Input (Single Sample), Analog Output, Analog Output (Single Sample), Digital Output

Digital Output


Purpose	Output data to multiple digital lines of data acquisition device								
Library	Data Acquisition Toolbox								
	Note You cannot use certain devices with Data Acquisition Toolbox Simulink blocks. Refer to the Supported Hardware page to see if your device supports Simulink use.								
Description	The Digital Output block synchronously outputs the latest set of data to the hardware at each simulation time step. It outputs unbuffered digital data. The output data is always a binary vector (binvec).								
	Note You need a license for both Data Acquisition Toolbox and Simulink software to use this block.								
	The block has no output ports. It can have one or more input ports, depending on the option you choose in the Sink Block Parameters dialog box. The following diagram shows the block configured with one port for all lines and with one port for each line, in the case of a device that has 12 lines selected.								

Digital Output - one port for each line

The Digital Output block inherits the sample time from the driving block connected to the input port. The data type of the signal at the input port must be a logical data type.

Digital output is done synchronously. The following diagram shows synchronous digital output.

At the first time step (T1), data is output to the selected hardware lines. The simulation does not continue until data is output to all lines.

Other Supported Features

The Digital Output block supports the use of Simulink Accelerator mode. This feature speeds up the execution of Simulink models.

Note You need the C++ Compiler to use Simulink Accelerator mode.

The block supports the use of model referencing. This feature lets your model include other Simulink models as modular components.

For more information on these features, see the Simulink documentation.

Dialog Box

Use the Sink Block Parameters dialog box to set configuration options.

5	Sink Block Parameters: Digital Output										
	-Digital Output										
	Output a set of values to multiple lines of a data acquisition device.										
	Para	meters-									
	Device: parallel LPT1 (PC Parallel Port Hardware)										
	De	vice. į parai				100	11C)				
							1				
	Line	es:				_	Select All Unselect All				
		Hardware Port ID Hardware Line ID					Name 📥				
	•		0			0	Pin2				
	☑		0			1	Pin3				
	☑		0			_	2 Pin4				
	•		n			2	DivE				
	No	mber of port	s: 1 for al	Lhardu	wate lines	_					
				maran							
			ОК		Cancel		Help	Apply			

Device

The data acquisition device to which you want to output data. The items in the list vary, depending on which devices you have connected to your system. Devices in the list are specified by adaptor/vendor name and unique device ID, followed by the name of the device. The first available device is selected by default.

Lines

The line configuration table lists your device's lines and lets you configure them. Use the check boxes and selection buttons to specify which lines to send data to.

Hardware Port ID

Specifies the ID for each hardware port. This is automatically detected and filled in by the selected device, and is read only.

Hardware Line ID

Specifies the ID of the hardware line. This is automatically detected and filled in by the selected device, and is read only.

Name

Specifies the hardware line name. This is automatically detected and filled in by the selected device, though you can edit the name.

Number of ports

Select 1 for all hardware lines (default) or 1 per hardware line.

Using **1** for all hardware lines means that the block will have only one input port for all lines selected in the table. Data needs to be [S x number of lines], where S is the number of samples. Data at the input port needs to be a binary vector (binvec).

Using **1 per hardware line** means the block will have one input port per selected line. The name of each input port is the name specified in the table for each line. If no name is provided, the name is "Port" + HwPort ID + Line + Line ID. For example, if line 2 of port 3 is selected, and you did not specify a name in the line table, Port3Line2 appears in the block. Data needs to be [1 x 1].

See Also Analog Input, Analog Input (Single Sample), Analog Output, Analog Output (Single Sample), Digital Input

Class Reference

daq.Session

Represent data acquisition session using National Instruments devices

daq.Session

Purpose	Represent data acquisition session using National Instruments devices	
Description	The session object configures and controls one or more devices including devices plugged into a CompactDAQ chassis, using the session-based interface. This class is not instantiated directly.	
Construction	<pre>s = daq.createSession('vendor') creates the data acquisition session s to work with vendor devices. Currently the only supported vendor is National Instruments.</pre>	
	Input Arguments	
	vendor	
	Is the ID of the device vendor you want to use. Currently the only supported vendor is 'ni'.	
Properties	ActiveEdge	Rising or falling edges of EdgeCount signals
	ActivePulse	Active pulse measurement of PulseWidth counter channel
	ADCTimingMode	Set channel timing mode
	AutoSyncDSA	Automatically Synchronize DSA devices
	BitsPerSample	Display bits per sample
	BridgeMode	Specify analog input device bridge mode
	Channels	Array of channel objects associated with session object
	Connections	Array of connections in session
	CountDirection	Specify direction of counter channel

Coupling	Specify input coupling mode
Destination	Indicates trigger destination terminal
Device	Channel device information
Direction	Specify digital channel direction
DurationInSeconds	Specify duration of acquisition
DutyCycle	Duty cycle of counter output channel
EncoderType	Encoding type of counter channel
ExcitationCurrent	Voltage of external source of excitation
ExcitationSource	External source of excitation
ExcitationVoltage	Voltage of excitation source
ExternalTriggerTimeout	Indicate if external trigger timed out
Frequency	Frequency of generated pulses on counter output channel
ID	ID of channel in session
IdleState	Default state of counter output channel
InitialCount	Specify initial count point
InitialDelay	Delay until output channel generates pulses
IsContinuous	Specify if operation continues until manually stopped
IsDone	Indicate if operation is complete
IsLogging	Indicate if hardware is acquiring or generating data

IsNotifyWhenDataAvailableExceeds@anttrol if is set automatically IsNotifyWhenScansQueuedBelowAutontrol if is set automatically

IsRunning	Indicate if operation is still in progress
IsSimulated	Indicate if device is simulated
$\label{eq:stars} Is Waiting For External Trigger$	Indicates if synchronization is waiting for an external trigger
MaxSoundPressureLevel	Sound pressure level for microphone channels
MeasurementType	Channel measurement type
Name	Specify descriptive name for the channel
NominalBridgeResistance	Resistance of sensor
Notify When Data Available Exceeds	Control firing of DataAvailable event
Notify When Scans Queued Below	Control firing of DataRequired event
NumberOfScans	Number of scans for operation when starting
R0	Specify resistance value
Range	Specify channel measurement range
Rate	Rate of operation in scans per second
RateLimit	Limit of rate of operation based on hardware configuration
RTDConfiguration	Specify wiring configuration of RTD device
RTDType	Specify sensor sensitivity

daq.Session

ScansAcquired	Number of scans acquired during operation
ScansOutputByHardware	Indicate number of scans output by hardware
ScansQueued	Indicate number of scans queued for output
Sensitivity	Sensitivity of an analog channel
ShuntLocation	Indicate location of channel's shunt resistor
ShuntResistance	Resistance value of channel's shunt resistor
Source	Indicates trigger source terminal
StandardSampleRates	Display standard rates of sampling
Terminal	PFI terminal of counter subsystem
TerminalConfig	Specify terminal configuration
Terminals	Terminals available on device or CompactDAQ chassis
ThermocoupleType	Select thermocouple type
TriggerCondition	Specify condition that must be satisfied before trigger executes
TriggersPerRun	Indicate the number of times the trigger executes in an operation
TriggersRemaining	Indicates the number of trigger to execute in an operation
TriggerType	Type of trigger executed
Туре	Display synchronization trigger type

Specify unit of RTD measurement
Configure session to use standard sample rates
Vendor information associated with session object
Reset condition for Z-indexing
Enable reset for Z-indexing
Reset value for Z-indexing

Methods

addAnalogInputChannel
addAnalogOutputChannel
addAudioInputChannel
addAudioOutputChannel
addClockConnection
addCounterInputChannel
addCounterOutputChannel
addDigitalChannel
addlistener
addTriggerConnection
binaryVectorToDecimal
binaryVectorToHex
DataAvailable

. 01

1 1 4

Add analog input channel Add analog output channel Add audio input channel Add audio output channel Add clock connection Add counter input channel Add counter output channel Add digital channel Create event listener Add trigger connection Convert binary vector value to decimal value Convert binary vector value to hexadecimal Notify when acquired data is available to process

DataRequired Event	Notify when additional data is required for output on continuous generation
decimalToBinaryVector	Convert decimal value to binary vector
ErrorOccurred Event	Notify when device-related errors occur
hexToBinaryVector	Convert hexadecimal value to binary vector
inputSingleScan	Acquire single scan from all input channels
outputSingleScan	Generate single scan on all output channels
prepare	Prepare session for operation
queueOutputData	Queue data to be output
release	Release session resources
removeChannel	Remove channel from session object
resetCounters	Reset counter channel to initial count
startBackground	Start background operations
startForeground	Start foreground operations
stop	Stop background operation
wait	Block MATLAB until background operation completes

daq.Session

Events

	DataAvailable	Notify when acquired data is available to process.
	DataRequired	Notify when additional data is required for output on continuous generation.
	ErrorOccurred	Notify when device-related errors occur.
Examples	s = daq.createSession('ni'); s.addAnalogInputChannel('cDAQ1Mod1', 'ai0', 'Voltage'); data = s.startForeground();	
See Also	daq.createSession daq.getDev	vices daq.getVendors

Functions — Alphabetical List

addchannel

Purpose	Add hardw	are channels to analog input or output object
Syntax	<pre>chans = addchannel(obj,hwch) chans = addchannel(obj,hwch,index) chans = addchannel(obj,hwch,'names') chans = addchannel(obj,hwch,index,'names')</pre>	
		cannot use the legacy interface on 64–bit MATLAB. See ased Interface" to acquire and generate data.
Arguments	obj	An analog input or analog output object.
	hwch	Specifies the numeric IDs of the hardware channels added to the device object. Any MATLAB vector syntax can be used.
	index	The MATLAB indices to associate with the hardware channels. Any MATLAB vector syntax can be used provided the vector elements are monotonically increasing.
	'names'	A descriptive channel name or cell array of descriptive channel names.
	chans	A column vector of channels with the same length as hwch.
Description	by hwch to	ddchannel(obj,hwch) adds the hardware channels specified the device object obj. The MATLAB indices associated with channels are assigned automatically. chans is a column nannels.
	specified by	ddchannel(obj,hwch,index) adds the hardware channels y hwch to the device object obj. index specifies the MATLAB associate with the added channels.

chans = addchannel(obj, hwch, 'names') adds the hardware channels specified by hwch to the device object obj. The MATLAB indices associated with the added channels are assigned automatically. names is a descriptive channel name or cell array of descriptive channel names.

chans = addchannel(obj,hwch,index,'names') adds the hardware channels specified by hwch to the device object obj. index specifies the MATLAB indices to associate with the added channels. names is a descriptive channel name or cell array of descriptive channel names.

Rules for Adding Channels

- The numeric values you supply for hwch depend on the hardware you access. For National Instruments and Measurement Computing hardware, channels are "zero-based" (begin at zero). For sound cards, channels are "one-based" (begin at one).
- Hardware channel IDs are stored in the HwChannel property and the associated MATLAB indices are stored in the Index property.
- You can add individual hardware channels to multiple device objects.
- For sound cards, you cannot add a hardware channel multiple times to the same device object.
- You can configure sound cards in one of two ways: mono mode or stereo mode. For mono mode, hwch must be 1. For stereo mode, the first hwch value specified must be 1.

Note If you are using National Instruments AMUX-64T multiplexer boards, you must use the addmuxchannel function to add channels.

• When you use the sound card, and only one channel is added to an analog output object the card is put into mono mode. The same signal is output to both channels.

Tips

More About MATLAB Indices

Every hardware channel contained by a device object has an associated MATLAB index that is used to reference the channel. Index assignments are made either automatically by addchannel or explicitly with the index argument and follow these rules:

- If index is not specified and no hardware channels are contained by the device object, then the assigned indices automatically start at one and increase monotonically. If hardware channels have already been added to the device object, then the assigned indices automatically start at the next highest index value and increase monotonically.
- If index is specified but the indices are previously assigned, then the requested assignment takes precedence and the previous assignment is reindexed to the next available values. If the lengths of hwch and index are not equal, then an error is returned and no channels are added to the device object.
- The resulting indices begin at one and increase monotonically up to the size of the channel group.
- If you are using scanning hardware, then the indices define the scan order.
- Sound cards cannot be reindexed.

Rules for Adding Channels to National Instruments 1200 Series Boards

When using National Instruments 1200 Series hardware, you need to modify the above rules in these ways:

• Channel IDs are given in reverse order with addchannel. For example, to add eight single-ended channels to the analog input object ai:

addchannel(ai,7:-1:0);

- The scan order is from the highest ID to the lowest ID (which must be 0).
- There cannot be any gaps in the channel group.

• When channels are configured in differential mode, the hardware IDs are 0, 2, 4, and 6.

More About Descriptive Channel Names

You can assign hardware channels descriptive names, which are stored in the ChannelName property. Choosing a unique descriptive name can be a useful way to identify and reference channels. For a single call to addchannel, you can

- Specify one channel name that applies to all channels that are to be added
- Specify a different name for each channel to be added

If the number of names specified in a single addchannel call is more than one but not equal to the number of channels to be added, then an error is returned. If a channel is to be referenced by its name, then that name must not contain symbols. If you are naming a large number of channels, then the makenames function might be useful. If a channel is not assigned a descriptive name, then it must be referenced by index.

A sound card configured in mono mode is automatically assigned the name Mono, while a sound card configured in stereo mode is automatically assigned the names Left for the first channel and Right for the second channel. You can change these default channel names when the device object is created, or any time after the channel is added.

Examples National Instruments

Suppose you create the analog input object AI1 for a National Instruments board, and add the first four hardware channels (channels 0-3) to it.

```
AI1 = analoginput('nidaq','Dev1');
addchannel(AI1,0:3);
```

The channels are automatically assigned the indices 1-4. If you want to add the first four hardware channels to AI1 and assign descriptive names to the channels,

```
addchannel(AI1,0:3,{'chan1','chan2','chan3','chan4'});
```

Note that you can use the makenames function to create a cell array of channel names. If you add channels 4, 5, and 7 to the existing channel group,

```
addchannel(AI1,[4 5 7]);
```

the new channels are automatically assigned the indices 5-7. Suppose instead you add channels 4, 5, and 7 to the channel group and explicitly assign them indices 1-3.

```
addchannel(AI1,[4 5 7],1:3);
```

The new channels are assigned the indices 1-3, and the previously defined channels are reindexed as indices 4-7. However, if you assigned channels 4, 5, and 7 to indices 6-8, an error is returned because there is a gap in the indices (index 5 has no associated hardware channel).

Sound Card

Suppose you create the analog input object AI1 for a sound card. Most sound cards have only two channels that can be added to a device object. To configure the sound card to operate in mono mode, you must specify hwch as 1.

```
AI1 = analoginput('winsound');
addchannel(AI1,1);
```

The ChannelName property is automatically assigned the value Mono. You can now configure the sound card to operate in stereo mode by adding the second channel.

```
addchannel(AI1,2);
```

The ChannelName property is assigned the values Left and Right for the two hardware channels. Alternatively, you can configure the sound card to operate in stereo mode with one call to addchannel.

```
addchannel(AI1,1:2);
```

See Also delete | makenames | ChannelName | HwChannel | Index

addline

Purpose	Add hardware lines to digital I/O object		
Syntax	<pre>lines = addline(obj,hwline,'direction') lines = addline(obj,hwline,port,'direction') lines = addline(obj,hwline,'direction','names') lines = addline(obj,hwline,port,'direction','names')</pre>		
	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
Arguments	obj	A digital I/O object.	
	hwline	The numeric IDs of the hardware lines added to the device object. Any MATLAB vector syntax can be used.	
	'direction'	The line directions can be In or Out, and can be specified as a single value or a cell array of values.	
	port	The numeric IDs of the digital I/O port.	
	'names'	A descriptive line name or cell array of descriptive line names.	
	lines	A column vector of lines with the same length as hwline.	
Description	specified by hw	he(obj,hwline,' <i>direction</i> ') adds the hardware lines line to the digital I/O object obj. <i>direction</i> configures ther input or output. lines is a row vector of lines.	
		ne(obj,hwline,port,' <i>direction</i> ') adds the hardware by hwline from the port specified by port to the digital	

I/O object obj.

lines = addline(obj,hwline,'direction','names') adds the hardware lines specified by hwline to the digital I/O object obj. names is a descriptive line name or cell array of descriptive line names. lines = addline(obj,hwline,port,'*direction*','names') adds the hardware lines specified by hwline from the port specified by port to the digital I/O object obj. direction configures the lines for either input or output. names is a descriptive line name or cell array of descriptive line names.

You cannot configure lines independently on devices that use the NI-DAQmx adaptor. Refer to "Line and Port Characteristics" for more information about line configurable devices.

Rules for Adding Lines

Tips

- The numeric values you supply for hwline depend on the hardware you access. For National Instruments and Measurement Computing hardware, line IDs are "zero-based" (begin at zero).
- You can add a line only once to a given digital I/O object.
- Hardware line IDs are stored in the HwLine property and the associated MATLAB indices are stored in the Index property.
- For a single call to addline, you can add multiple lines from one port or the same line ID from multiple ports. You cannot add multiple lines from multiple ports.
- If a port ID is not explicitly referenced, lines are added first from port 0, then from port 1, and so on.
- You can specify the line directions as a single value or a cell array of values. If a single direction is specified, then all added lines have that direction. If supported by the hardware, you can configure individual lines by supplying a cell array of directions.

More About MATLAB Indices

Every hardware line contained by a device object has an associated MATLAB index that is used to reference the line. Index assignments are made automatically by addline and follow these rules:

• If no hardware lines are contained by the device object, then the assigned indices automatically start at one and increase monotonically. If hardware lines have already been added to the

addline

device object, then the assigned indices automatically start at the next highest index value and increase monotonically.

- The resulting indices begin at one and increase monotonically up to the size of the line group.
- The first indexed line represents the least significant bit (LSB) and the highest indexed line represents the most significant bit (MSB).

More About Descriptive Line Names

You can assign hardware lines descriptive names, which are stored in the LineName property. Choosing a unique descriptive name can be a useful way to identify and reference lines. For a single call to addline, you can

- Specify one line name that applies to all lines that are to be added
- Specify a different name for each line to be added

If the number of names specified in a single addline call is more than one but differs from the number of lines to be added, then an error is returned. If a line is to be referenced by its name, then that name must not contain symbols. If you are naming a large number of lines, then the makenames function might be useful. If a line is not assigned a descriptive name, then it must be referenced by index.

Examples Create the digital I/O object dio and add the first four hardware lines (line IDs 0-3) from port 0.

dio = digitalio('nidaq','Dev1'); addline(dio,0:3,'in');

These lines are automatically assigned the indices 1-4. If you want to add the first four hardware lines to dio and assign descriptive names to the lines,

```
addline(dio,0:3,'in',{'line1','line2','line3','line4'});
```

Note that you can use the makenames function to create a cell array of line names. You can add the first four hardware lines (line IDs 0-3) from port 1 to the existing line group.

addline(dio,0:3,1,'out');

The new lines are automatically assigned the indices 5-8.

See Also delete | makenames | HwLine | Index | LineName

addmuxchannel

Purpose	Add hardware channels to analog input objects when using National Instruments multiplexer board	
Syntax	addmuxchannel(obj) addmuxchannel(obj,chanids) chans = addmuxchannel()	
		annot use the legacy interface on 64–bit MATLAB. See sed Interface" to acquire and generate data.
Arguments	obj	An analog input object associated with a National Instruments Traditional NI-DAQ board.
	chanids	The hardware channel IDs.
	chans	The channels that are added to obj.
Description	addmuxchannel(obj) adds as many channels to obj as is physically possible based on the number of National Instruments AMUX-64T multiplexer (mux) boards specified by the NumMuxBoards property. For one mux board, 64 channels are added. For two mux boards, 128 channels are added. For four mux boards, 256 channels are added.	
		el(obj,chanids) adds the channels specified by chanids to s refers to the hardware channel IDs of the data acquisition
	mux boards board with 1 then addmux <i>Manual</i> for 1 hardware ch	number of channels added to obj depends on the number of used. For example, suppose you are using a data acquisition 6 channels connected to one mux board. If chanid is 0, channel adds four channels. Refer to the <i>AMUX-64T User</i> more information about adding mux channels based on annel IDs and the number of mux boards used. muxchannel() returns the channels added to chans.

This function is not available for National Instruments NI-DAQmx boards.

Before using addmuxchannel, you must set the NumMuxBoards property to the appropriate value. You can use as many as four mux boards with one analog input object. addmuxchannel deletes all channels contained by obj before new channels are added.

Note The Traditional NI-DAQ adaptor will be deprecated in a future version of the toolbox. If you create a Data Acquisition Toolbox[™] object for Traditional NI-DAQ adaptor beginning in R2008b, you will receive a warning stating that this adaptor will be removed in a future release. See the supported hardware page at www.mathworks.com/products/daq/supportedio.html for more information.

See Also muxchanidx

Tips

Purpose	Create analog input object		
Syntax	<pre>AI = analoginput('adaptor') AI = analoginput('adaptor',ID)</pre>		
	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
Description	AI = analoginput(' <i>adaptor</i> ') creates the analog input object AI for a sound card having an ID of 0 (<i>adaptor</i> must be winsound). This is the only case where ID is not required.		
	AI = analoginput(' <i>adaptor</i> ', ID) creates the analog input object AI for the specified adaptor and for the hardware device with device identifier ID. ID can be specified as an integer or a string.		
	Note The Traditional NI-DAQ adaptor will be deprecated in a future version of the toolbox. If you create a Data Acquisition Toolbox [™] object for Traditional NI-DAQ adaptor beginning in R2008b, you will receive a warning stating that this adaptor will be removed in a future release. See the supported hardware page at www.mathworks.com/products/daq/supportedio.html for more information.		
Tips	Creating Analog Input Objects		
	• When an analog input object is created, it does not contain any hardware channels. To execute the device object, hardware channels must be added with the addchannel function.		
	• You can create multiple analog input objects that are associated with a particular analog input subsystem. However, you can typically execute only one object at a time.		

- The analog input object exists in the data acquisition engine and in the MATLAB workspace. If you create a copy of the device object, it references the original device object in the engine.
- If ID is a numeric value, then you can specify it as an integer or a string. If ID contains any nonnumeric characters, then you must specify it as a string. (See the National Instruments example below.)
- The Name property is automatically assigned a descriptive name that is produced by concatenating *adaptor*, ID, and -AI. You can change this name at any time.

Notes When you create an analog input object, it consumes system resources. To avoid this issue, make sure that you do not create objects in a loop. If you must create objects in a loop, make sure you delete them within the loop.

Hardware Device Identifier

When data acquisition devices are installed, they are assigned a unique number which identifies the device in software. The device identifier is typically assigned automatically and can usually be manually changed using a vendor-supplied device configuration utility. National Instruments refers to this identifier as the device name.

For sound cards, the device identifier is typically not exposed to you through the Microsoft[®] Windows[®] environment. However, Data Acquisition Toolbox software automatically associates each sound card with an integer ID value. There are two cases to consider:

- If you have one sound card installed, then ID is 0. You are not required to specify ID when creating an analog input object associated with this device.
- If you have multiple sound cards installed, the first one installed has an ID of 0, the second one installed has an ID of 1, and so on. You must specify ID when creating analog input objects associated with devices not having an ID of 0.

	There are two ways you can determine the ID for a particular device:		
	• Type daqhwinfo('adaptor').		
	• Execute the vendor-supplied dev	vice configuration utility.	
Input	adaptor		
Arguments	The hardware driver adaptor name. The supported adaptors are advantech, , mcc, nidaq, and winsound.		
	ID		
	The hardware device identifier. ID is optional if the device object is associated with a sound card having an ID of 0.		
Output	ΑΙ		
Arguments	The analog input object.		
Properties	ties Basic Setup		
	SampleRate	Specify per-channel rate at which analog data is converted to digital data, or vice versa	
	SamplesPerTrigger	Specify number of samples to acquire for each channel group member for each trigger that occurs	
	TriggerType	Specify type of trigger to execute	
	Channel Properties		
	ChannelName	Specify descriptive channel name	
	HwChannel	Specify hardware channel ID	
	HwLine	Specify hardware line ID	

Index	MATLAB index of hardware channel or line
InputRange	Specify range of analog input subsystem
NativeOffset	Indicate offset to use when converting between native data format and doubles
NativeScaling	Indicate scaling to use when converting between native data format and doubles
Parent	Indicate parent (device object) of channel or line
SensorRange	Specify range of data expected from sensor
Туре	Indicate device object type, channel, or line
Units	Specify engineering units label
UnitsRange	Specify range of data as engineering units

Trigger Properties

InitialTriggerTime	Absolute time of first trigger
ManualTriggerHwOn	Specify hardware device starts at manual trigger
TriggerChannel	Specify channel serving as trigger source
TriggerCondition	Specify condition that must be satisfied before trigger executes

TriggerConditionValue	Specify voltage value(s) that must be satisfied before trigger executes
TriggerDelay	Specify delay value for data logging
TriggerDelayUnits	Specify units in which trigger delay data is measured
TriggerFcn	Specify callback function to execute when trigger occurs
TriggerRepeat	Specify number of additional times trigger executes
TriggersExecuted	Indicate number of triggers that execute
TriggerType	Specify type of trigger to execute
Logging Properties	
LogFileName	Specify name of disk file information is logged to
Logging	Indicate whether data is being logged to memory or disk file
LoggingMode	Specify destination for acquired data
LogToDiskMode	Specify whether data, events, and hardware information are saved to one or more disk files

Status Properties

Logging	Indicate whether data is being logged to memory or disk file
Running	Indicate whether device object is running
SamplesAcquired	Indicate number of samples acquired per channel
SamplesAvailable	Indicate number of samples available per channel in engine

Hardware Configuration Properties

ChannelSkew	Specify time between consecutive scanned hardware channels
ChannelSkewMode	Specify how channel skew is determined
ClockSource	Specify clock that governs hardware conversion rate
InputType	Specify analog input hardware channel configuration
SampleRate	Specify per-channel rate at which analog data is converted to digital data, or vice versa
Callback Properties	
DataMissedFcn	Specify callback function to execute when data is missed
InputOverRangeFcn	Specify callback function to execute when acquired data exceeds valid hardware range

RuntimeErrorFcn	Specify callback function to execute when run-time error occurs
SamplesAcquired	Indicate number of samples acquired per channel
SamplesAcquiredFcn	Specify callback function to execute when predefined number of samples is acquired for each channel group member
SamplesAcquiredFcnCount	Specify number of samples to acquire for each channel group member before samples acquired event is generated
StartFcn	Specify callback function to execute before device object runs
StopFcn	Specify callback function to execute after device object runs
TimerFcn	Specify callback function to execute when predefined time period passes
TimerPeriod	Specify time period between timer events
TriggerFcn	Specify callback function to execute when trigger occurs

General Purpose Properties

BufferingConfig	Specify per-channel allocated memory
BufferingMode	Specify how memory is allocated
Channel	Contain hardware channels added to device object

	EventLog	Store information for specific events	
	Name	Specify descriptive name for the channel	
	Тад	Specify device object label	
	Timeout	Specify additional waiting time to extract or queue data	
	Туре	Indicate device object type, channel, or line	
	UserData	Store data to associate with device object	
Examples	To create an analog input object for a National Instruments device defined as 'Dev1':		
	AI = analoginput('nidaq','Dev1');		
	To create an analog input object for a Measurement Computing device defined as '1':		
	<pre>AI = analoginput('mcc','1');</pre>		
Alternatives	"Session-Based Interface"		
See Also	addchannel daqhwinfo		

analogoutput

Purpose	Create analog output object		
Syntax	A0 = analogoutput(' <i>adaptor</i> ') A0 = analogoutput(' <i>adaptor</i> ',ID)		
	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
Arguments	'adaptor'	The hardware driver adaptor name. The supported adaptors are advantech, mcc, nidaq, and winsound.	
	ID	The hardware device identifier. ID is optional if the device object is associated with a sound card having an ID of 0.	
	AO	The analog output object.	
Description	 A0 = analogoutput('adaptor') creates the analog output object A0 for a sound card having an ID of 0 (adaptor must be winsound). This is the only case where ID is not required. A0 = analogoutput('adaptor', ID) creates the analog output object A0 for the specified adaptor and for the hardware device with device identifier ID. ID can be specified as an integer or a string. Note The Traditional NI-DAQ adaptor will be deprecated in a future version of the toolbox. If you create a Data Acquisition Toolbox™ object for Traditional NI-DAQ adaptor beginning in R2008b, you will receive a warning stating that this adaptor will be removed in a future release. See the supported hardware page at www.mathworks.com/products/daq/supportedio.html for more information. 		

More About Creating Analog Output Objects

Tips

- When an analog output object is created, it does not contain any hardware channels. To execute the device object, hardware channels must be added with the addchannel function.
- You can create multiple analog output objects that are associated with a particular analog output subsystem. However, you can typically execute only one object at a time.
- The analog output object exists in the data acquisition engine and in the MATLAB workspace. If you create a copy of the device object, it references the original device object in the engine.
- If ID is a numeric value, then you can specify it as an integer or a string. If ID contains any nonnumeric characters, then you must specify it as a string.
- The Name property is automatically assigned a descriptive name that is produced by concatenating *adaptor*, ID, and -AO. You can change this name at any time.

Notes When you create an analog output object, it consumes system resources. To avoid this issue, make sure that you do not create objects in a loop. If you must create objects in a loop, make sure you delete them within the loop.

More About the Hardware Device Identifier

When data acquisition devices are installed, they are assigned a unique number which identifies the device in software. The device identifier is typically assigned automatically and can usually be manually changed using a vendor-supplied device configuration utility. National Instruments refers to this number as the device number.

For sound cards, the device identifier is typically not exposed to you through the Microsoft Windows environment. However, Data Acquisition Toolbox software automatically associates each sound card with an integer ID value. There are two cases to consider:

	• If you have one sound card installed, then ID is 0. You are not required to specify ID when creating an analog output object associated with this device.			
	an ID of 0, the second one ir must specify ID when creati	If you have multiple sound cards installed, the first one installed has an ID of 0, the second one installed has an ID of 1, and so on. You must specify ID when creating analog output objects associated with devices not having an ID of 0.		
	There are two ways you can determine the ID for a particular device:			
	• Type daqhwinfo('adaptor').			
	• Execute the vendor-supplied	• Execute the vendor-supplied device configuration utility.		
Properties	Basic Setup Properties			
	SampleRate	Specify per-channel rate at which analog data is converted to digital data, or vice versa		
	TriggerType	Specify type of trigger to execute		
	Channel Properties			
	ChannelName	Specify descriptive channel name		
	DefaultChannelValue	Specify value held by analog output subsystem		
	HwChannel	Specify hardware channel ID		
	Index	MATLAB index of hardware channel or line		
	NativeOffset	Indicate offset to use when converting between native data format and doubles		
	NativeScaling	Indicate scaling to use when converting between native data format and doubles		

analogoutput

OutputRange	Specify range of analog output hardware subsystem
Parent	Indicate parent (device object) of channel or line
Туре	Indicate device object type, channel, or line
Units	Specify engineering units label
UnitsRange	Specify range of data as engineering units
Trigger Properties	
InitialTriggerTime	Absolute time of first trigger
TriggerFcn	Specify callback function to execute when trigger occurs
TriggersExecuted	Indicate number of triggers that execute
TriggerType	Specify type of trigger to execute
Status Properties	
Running	Indicate whether device object is running
SamplesAvailable	Indicate number of samples available per channel in engine
SamplesOutput	Indicate number of samples output per channel from engine
Sending	Indicate whether data is being sent to hardware device

Hardware Configuration Properties

ClockSource	Specify clock that governs hardware conversion rate
SampleRate	Specify per-channel rate at which analog data is converted to digital data, or vice versa
Data Management Properties	
MaxSamplesQueued	Indicate maximum number of samples that can be queued in engine
RepeatOutput	Specify number of additional times queued data is output
Timeout	Specify additional waiting time to extract or queue data
Callback Properties	
Callback Properties RuntimeErrorFcn	Specify callback function to execute when run-time error occurs
•	execute when run-time error
- RuntimeErrorFcn	execute when run-time error occurs Specify callback function to execute when predefined number of samples is output for each

analogoutput

StopFcn	Specify callback function to execute after device object runs
TimerFcn	Specify callback function to execute when predefined time period passes
TimerPeriod	Specify time period between timer events
TriggerFcn	Specify callback function to execute when trigger occurs

General Purpose Properties

BufferingConfig	Specify per-channel allocated memory
BufferingMode	Specify how memory is allocated
Channel	Contain hardware channels added to device object
EventLog	Store information for specific events
Name	Specify descriptive name for the channel
OutOfDataMode	Specify how value held by analog output subsystem is determined
Tag	Specify device object label
Туре	Indicate device object type, channel, or line
UserData	Store data to associate with device object

analogoutput

Examples	National Instruments
	To create an analog output object for a National Instruments device defined as 'Dev1':
	AO = analogoutput('nidaq','Dev1');
	To create an analog output object for a Measurement Computing device defined as '1':
	AO = analogoutput('mcc','1');
See Also	addchannel daqhwinfo Name

Purpose	Convert digital input and output binary vector to decimal value		
Syntax	<pre>out = binvec2dec(bin)</pre>		
	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
Arguments	bin	A binary vector.	
	out	A double array.	
Description	out = binvec2dec(bin) converts the binary vector bin to the equivalent decimal number and stores the result in out. All nonzero binary vector elements are interpreted as a 1.		
Tips	A binary vector (binvec) is constructed with the least significant bit (LSB) in the first column and the most significant bit (MSB) in the last column. For example, the decimal number 23 is written as the binvec value [1 1 1 0 1].		
	Note The b	pinary vector cannot exceed 52 values.	
Examples	To convert t	the binvec value [1 1 1 0 1] to a decimal value:	
See Also	dec2binvec		

clear

Purpose	Remove device objects fro	Remove device objects from MATLAB workspace		
Syntax	clear obj clear obj.Channel(index) clear obj.Line(index)			
		e legacy interface on 64–bit MATLAB. See to acquire and generate data.		
Arguments	obj	A device object or array of device objects.		
	obj.Channel(index) obj.Line(index)	One or more channels contained by obj. One or more lines contained by obj.		
Description		nd all associated channels or lines from the not from the data acquisition engine.		
	clear obj.Channel(index) removes the specified channels contained by obj from the MATLAB workspace, but not from the data acquisition engine.			
		emoves the specified lines contained by obj pace, but not from the data acquisition engine.		
Tips	Clearing device objects, cl	hannels, and lines follows these rules:		
		device objects, channels, or lines from the e. Use the delete function for this purpose.		
	-	to a device object exist in the workspace, will not invalidate the remaining references.		
	• You can restore cleared with the daqfind function	d device objects to the MATLAB workspace tion.		

	If you use the help command to display the file help for clear, then you must supply the pathname shown below. help daq/private/clear
Examples	Create the analog input object ai, copy ai to a new variable aicopy, and then clear the original device object from the MATLAB workspace.
	ai = analoginput('winsound'); ch = addchannel(ai,1:2); aicopy = ai; clear ai
	Retrieve ai from the engine with daqfind, and show you that ai is identical to aicopy.
	ainew = daqfind; isequal(aicopy,ainew) ans = 1
See Also	daqfind delete

daqcallback

Purpose	Callback function that displays event information for specified event		
Syntax	daqcallback(obj,event)		
	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
Arguments	obj	A device object.	
	event	A variable that captures the event information contained by the EventLog property.	
Description	informatic informatic that cause time in Ev	ck(obj,event) is an example callback function that displays on to the MATLAB Command Window. For all events, the on includes the event type and the name of the device object ad the event to occur. For events that record the absolute entLog, the event time is also displayed. For run-time error e error message is also displayed.	
Tips	You specify daqcallback as the callback function to be executed for any event by specifying it as the value for the associated callback property. For analog input objects, daqcallback is the default value for the DataMissedFcn and RuntimeErrorFcn properties. For analog output objects, daqcallback is the default value for the RuntimeErrorFcn property.		
		se the showdaqevents function to easily display event on captured by the EventLog property.	
Examples	Create the event occu	e analog input object ai and call daqcallback when a trigger ars.	
	ai = anal addchanne	Loginput('winsound'); el(ai,1);	

```
set(ai,'TriggerRepeat',3)
set(ai,'TriggerFcn',@daqcallback)
start(ai)
```

See Also showdaqevents | DataMissedFcn | EventLog | RuntimeErrorFcn

daqfind

Purpose	Return device objects, channels, or lines from data acquisition engine to MATLAB workspace
Syntax	<pre>out = daqfind out = daqfind('PropertyName',PropertyValue,) out = daqfind(S) out = daqfind(obj,'PropertyName',PropertyValue,)</pre>

Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.

Arguments	'PropertyName'	A device object, channel, or line property name.	
	PropertyValue	A device object, channel, or line property value.	
	obj	A device object, array of device objects, channels, or lines.	
	S	A structure with field names that are property names and field values that are property values.	
	out	An array or cell array of device objects, channels, or lines.	
Description		urns all device objects that exist in the data . The output out is an array.	
	out = daqfind(' <i>PropertyName</i> ', PropertyValue,) returns all device objects, channels, or lines that exist in the data acquisition engine and have the specified property names and property values. The property name/property value pairs can be specified as a cell array.		
	in the data acquis values specified by	returns all device objects, channels, or lines that exist ition and have the property names and property S . S is a structure with field names that are property alues that are property values.	

out = daqfind(obj, 'PropertyName', PropertyValue,...) returns all device objects, channels, or lines listed by obj that have the specified property names and property values.

More About Finding Device Objects, Channels, or Lines

daqfind is particularly useful in these circumstances:

- A device object is cleared from the MATLAB workspace, and it needs to be retrieved from the data acquisition engine.
- You need to locate device objects, channels, or lines that have particular property names and property values.

Rules for Specifying Property Names and Property Values

- You can use property name/property value string pairs, structures, and cell array pairs in the same call to daqfind. However, in a single call to daqfind, you can specify only device object properties or channel/line properties.
- You must use the same format as returned by get. For example, if get returns the ChannelName property value as Left, you must specify Left as the property value in daqfind (case matters). However, case does not matter when you specify enumerated property values. For example, daqfind will find a device object with a Running property value of On or on.

Examples You can use daqfind to return a cleared device object.

Tips

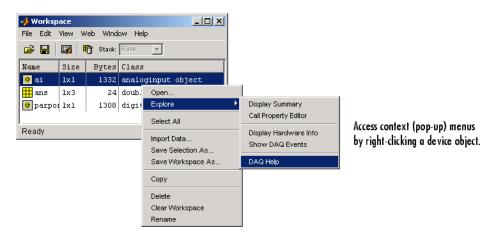
```
ai = analoginput('winsound');
ch = addchannel(ai,1:2);
set(ch,{'ChannelName'},{'Joe';'Jack'})
clear ai
ainew = daqfind;
```

To return the channel associated with the descriptive name Jack:

ch2 = daqfind(ainew, 'ChannelName', 'Jack');

To return the device object with a sampling rate of 8000 Hz and the descriptive name winsoundO-AI, you can pass a structure to daqfind.

```
S.Name = 'winsoundO-AI';
S.SampleRate = 8000;
daqobj = daqfind(S);
```


See Also clear | get | propinfo

Purpose	Help for dev	ice objects, constructors, adaptors, functions, and properties
Syntax	<pre>daqhelp out = daqhelp('name') out = daqhelp(obj) out = daqhelp(obj,'name')</pre>	
		cannot use the legacy interface on 64–bit MATLAB. See sed Interface" to acquire and generate data.
Arguments	'name'	A device object, constructor, adaptor, function, or property name.
	obj	A device object.
	out	Contains the specified help text.
Description	• • •	plays a complete listing of Data Acquisition Toolbox and functions along with a brief description of each.
		lp('name') returns help for the device object, constructor, action, or property specified by name. The help text is out.
		lp(obj) returns a complete listing of functions and or the device object obj to out. Help for obj's constructor is ed.
		lp(obj,'name') returns help for name for the specified t obj to out. name can be a constructor, adaptor, property, name.

daqhelp

Tips

As shown below, you can also display help via the Workspace browser by right-clicking a device object, and selecting **Explore > DAQ Help** from the context menu.

More About Displaying Help

- When displaying property help, the names in the "See Also" section that contain all uppercase letters are function names. The names that contain a mixture of upper- and lowercase letters are property names.
- When displaying function help, the "See Also" section contains only function names.

Rules for Specifying Names

For the daqhelp('name') syntax:

- If name is the name of a constructor, a complete listing of the device object's functions and properties is displayed along with a brief description of each function and property. The constructor help is also displayed.
- You can display object-specific function information by specifying name as object/function. For example, to display the help for an analog input object's getdata function, name is analoginput/getdata.

	• You can display object-specific property information by specifying name as obj.property. For example, to display the help for an analog input object's SampleRate property, name is analoginput.SampleRate.
	For the daqhelp(obj, 'name') syntax:
	• If name is the name of a device object constructor and the .m extension is included, the constructor help is displayed.
	• If name is the name of a function or property, the function or property help is displayed.
Examples	The following commands are some of the ways you can use daqhelp to obtain help on device objects, constructors, adaptors, functions, and properties.
	daqhelp('analogoutput'); out = daqhelp('analogoutput.m'); daqhelp set daqhelp analoginput/peekdata daqhelp analoginput.TriggerDelayUnits
	The following commands are some of the ways you can use daqhelp to obtain information about functions and properties for an existing device object.
	ai = analoginput('winsound'); daqhelp(ai,'InitialTriggerTime') out = daqhelp(ai,'getsample');

See Also propinfo

daqhwinfo

Purpose	Data acquisitio	Data acquisition hardware information	
Syntax	out = daqhwinfo out = daqhwinfo(' <i>adaptor</i> ') out = daqhwinfo(obj) out = daqhwinfo(obj,' <i>FieldName</i> ')		
		not use the legacy interface on 64–bit MATLAB. See Interface" to acquire and generate data.	
Arguments	'adaptor'	The hardware driver adaptor name. The supported adaptors are advantech, mcc, nidaq, parallel, and	
	obj	A device object or array of device objects.	
	'FieldName'	A single field name or a cell array of field names.	
	out	A structure containing the requested hardware information.	
Description	structure to out	o returns general hardware-related information as a t. The returned information includes installed adaptors, the MATLAB software version, and the toolbox name.	
	<pre>out = daqhwinfo('adaptor') returns hardware-related information for the specified adaptor. The returned information includes the adaptor DLL name, the board names and IDs, and the device object constructor syntax.</pre> Note If you are trying to discover National Instruments including CompactDAQ or Counter/Timer subsystem devices, use the daq.getDevices method.		

out = daqhwinfo('adaptor', 'FieldName') returns the hardware-related information specified by FieldName for adaptor. FieldName must be a single string. out is a cell array. You can return a list of valid field names with the daqhwinfo('adaptor') syntax.

out = daqhwinfo(obj) returns hardware-related information for the device object obj. If obj is an array of device objects, then out is a 1-by-n cell array of structures where n is the length of obj. The returned information depends on the device object type, and might include the maximum and minimum sampling rates, the channel gains, the hardware channel or line IDs, and the vendor driver version.

out = daqhwinfo(obj,'FieldName') returns the hardware-related information specified by FieldName for the device object obj. FieldName can be a single field name or a cell array of field names. out is an m-by-n cell array where m is the length of obj and n is the length of FieldName. You can return a list of valid field names with the daqhwinfo(obj) syntax.

Tips

As shown below, you can also return hardware information via the Workspace browser by right-clicking a device object, and selecting **Display Hardware Info** from the context menu.

File	Workspace Edit View Grap	hics Debug I	Desktop	- U X » "
1	🖻 🖻 🛍 🍐		 Base 	~
Nar	me ∠	Value		Min M
	oi Open Selection Save As	<1v1 analo	ginp >	
	Copy Duplicate Delete	Ctrl+C Ctrl+D Delete		
	Rename Edit Value			
	Display Summary Display Hardware	Info		
	Show DAQ Events			
	DAQ Help			

daqhwinfo

Examples Display all installed adaptors. Note that this list might be different for your platform.

```
out = daqhwinfo;
out.InstalledAdaptors
ans =
    'advantech'
    'mcc'
    'nidaq'
    'parallel'
    'winsound'
```

To display the device object constructor names for all installed winsound devices:

Create the analog input object ai for a sound card. To display the input ranges for ai:

```
ai = analoginput('winsound');
out = daqhwinfo(ai);
out.InputRanges
ans =
     -1 1
```

To display the minimum and maximum sampling rates for ai:

```
out = daqhwinfo(ai,{'MinSampleRate','MaxSampleRate'})
out =
    [8000] [44100]
```

Notes The Traditional NI-DAQ adaptor will be deprecated in a future version of the toolbox. If you create a Data Acquisition Toolbox[™] object for Traditional NI-DAQ adaptor beginning in R2008b, you will receive a warning stating that this adaptor will be removed in a future release.

The Parallel adaptor will be deprecated in a future version of the toolbox. If you create a Data Acquisition Toolbox[™] object for 'parallel' beginning in R2008b, you will receive a warning stating that this adaptor will be removed in a future release. See the supported hardware page at www.mathworks.com/products/daq/supportedio.html for more information.

daqmem

Purpose	Allocate or displ	ay analog input and output memory resources	
Syntax	out = daqmem out = daqmem(obj) daqmem(obj,maxmem)		
		ot use the legacy interface on 64–bit MATLAB. See Interface" to acquire and generate data.	
Arguments	obj	A device object or array of device objects.	
	maxmem out	The amount of memory to allocate. A structure containing information about memory resources.	
Description	describing the m	turns the object out, which contains several properties nemory resources associated with your platform and n Toolbox. The fields are described below.	
	Field	Description	
	MemoryLoad	Specifies a number between 0 and 100 that gives a general idea of current memory utilization. 0 indicates no memory use and 100 indicates full memory use.	
	TotalPhys	Indicates the total number of bytes of physical memory.	
	AvailPhys	Indicates the number of bytes of physical memory available.	

Field	Description
TotalPageFile	Indicates the total number of bytes that can be stored in the paging file. Note that this number does not represent the actual physical size of the paging file on disk.
AvailPageFile	Indicates the number of bytes available in the paging file.
TotalVirtual	Indicates the total number of bytes that can be described in the user mode portion of the virtual address space of the calling process.
AvailVirtual	Indicates the number of bytes of unreserved and uncommitted memory in the user mode portion of the virtual address space of the calling process.
UsedDaq	The total memory used by all device objects.

Note that all the above fields, except for UsedDaq, are identical to the fields returned by Windows' MemoryStatus function.

out = daqmem(obj) returns a 1-by-N structure out containing two fields: UsedBytes and MaxBytes for the device object obj. N is the number of device objects specified by obj. UsedBytes returns the number of bytes used by obj. MaxBytes returns the maximum number of bytes that can be used by obj.

daqmem(obj,maxmem) sets the maximum memory that can be allocated for obj to the value specified by maxmem.

More About Allocating and Displaying Memory Resources

- For analog output objects, daqmem(obj,maxmem) controls the value of the MaxSamplesQueued property.
- If you manually configure the BufferingConfig property, then this value supersedes the values specified by daqmem(obj,maxmem) and the MaxSamplesQueued property.

Tips

daqmem

Examples Create the analog input object aiwin for a sound card and the analog input object aini for a National Instruments board, and add two channels to each device object.

```
aiwin = analoginput('winsound');
addchannel(aiwin,1:2);
aini = analoginput('nidaq','Dev1');
addchannel(aini,0:1);
```

To display the total memory used by all existing device objects:

```
out = daqmem;
out.UsedDaq
ans =
69120
```

To configure the maximum memory used by aiwin to 640 KB:

daqmem(aiwin,640000)

To configure the maximum memory used by each device object with one call to daqmem:

daqmem([aiwin aini],[640000 480000])

See Also BufferingConfig | MaxSamplesQueued

 Purpose
 Read Data Acquisition Toolbox (.daq) file for analog input

 Note
 You cannot use the legacy interface on 64-bit MATLAB. See "Session-Based Interface" to acquire and generate data.

 See Also
 daqread

daqregister

Purpose	Register or u	anregister hardware driver adaptor	
Syntax	daqregister out = daqre	<pre>daqregister('adaptor') daqregister('adaptor','unload') out = daqregister()</pre>	
		annot use the legacy interface on 64–bit MATLAB. See sed Interface" to acquire and generate data.	
Arguments	'adaptor'	The hardware driver adaptor name. The supported adaptors are advantech, mcc, nidaq, parallel, and winsound.	
	'unload'	Specifies that the hardware driver adaptor is to be unloaded.	
	out	Captures the message returned by daqregister.	
	version of th for Tradition warning stat The Parallel If you create beginning in adaptor will	 Traditional NI-DAQ adaptor will be deprecated in a future e toolbox. If you create a Data Acquisition Toolbox[™] object hal NI-DAQ adaptor beginning in R2008b, you will receive a ting that this adaptor will be removed in a future release. adaptor will be deprecated in a future version of the toolbox. a Data Acquisition Toolbox[™] object for 'parallel' R2008b, you will receive a warning stating that this be removed in a future release. See the supported hardware mathworks.com/products/daq/supportedio.html for ation. 	
Description	daqregister specified by	('adaptor') registers the hardware driver adaptor adaptor.	

	Notes You must have administrative privileges to register or unregister hardware driver adaptors.
	If you are using a Windows Vista [™] machine, you must log on with Administrative privileges and run MATLAB. You should then execute daqregister with elevated permissions. This will allow the User Account Control feature on your computer to run correctly.
	For third-party adaptors, <i>adaptor</i> must include the full pathname.
	daqregister(' <i>adaptor</i> ',' unload ') unregisters the hardware driver adaptor specified by <i>adaptor</i> . For third-party adaptors, <i>adaptor</i> must include the full pathname.
	out = daqregister() captures the resulting message in out.
Tips	A hardware driver adaptor must be registered so the data acquisition engine can make use of its services. Unless an adaptor is unloaded, registration is required only once.
	For adaptors that are included with the toolbox, registration occurs automatically when you first create a device object. However, you might need to register third-party adaptors manually. In either case, you must install the associated hardware driver before registration can occur.
Examples	The following command registers the sound card adaptor provided with the toolbox.
	daqregister('winsound');
	The following command registers the third-party adaptor myadaptor.dll. Note that you must supply the full pathname to daqregister.
	daqregister('D:/MATLABR12/toolbox/daq/myadaptors/ myadaptor.dll');

daqreset

Purpose	Remove device objects, engine MEX-file, and adaptor DLLs from memory
Syntax	daqreset
	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.
Description	daqreset removes all device objects existing in the engine, and unloads all data acquisition executables loaded by the engine (including the adaptor DLLs and the engine MEX-file).
	You should use daqreset to return the MATLAB workspace to a known initial state of having no device objects and no data acquisition MEX-file or DLLs loaded in memory. When the MATLAB workspace returns to this state, the data acquisition hardware is reset.
	Note daqreset only affects Data Acquisition Toolbox engine and its adaptors. It does not affect the hardware. To reset the hardware you must use the tools supplied by the hardware vendor. Refer to your hardware documentation for details.
See Also	clear delete

Purpose	Convert di	gital input and output decimal value to binary vector
Syntax	<pre>out = dec2binvec(dec) out = dec2binvec(dec,bits)</pre>	
		cannot use the legacy interface on 64–bit MATLAB. See ased Interface" to acquire and generate data.
Arguments	dec bits	A decimal value. dec must be nonnegative. Number of bits used to represent the decimal number.
	out	A logical array containing the binary vector.
Description		binvec(dec) converts the decimal value dec to an equivalent tor and stores the result as a logical array in out.
		binvec(dec,bits) converts the decimal value dec to an binary vector consisting of at least the number of bits y bits.
Tips	More Ab	out Binary Vectors
	(LSB) in th	ector (binvec) is constructed with the least significant bit ne first column and the most significant bit (MSB) in the last or example, the decimal number 23 is written as the binvec 1 0 1].
	More Abo	ut Specifying the Number of Bits
		is greater than the minimum number of bits required to the decimal value, then the result is padded with zeros.
		s less than the minimum number of bits required to represent mal value, then the minimum number of required bits is used.

dec2binvec

	• If bits is not specified, then the minimum number of bits required to represent the number is used.
Examples	To convert the decimal value 23 to a binvec value:
	dec2binvec(23) ans = 1 1 1 0 1
To convert the decimal value 23 to a binvec val	To convert the decimal value 23 to a binvec value using six bits:
	dec2binvec(23,6) ans =
	1 1 1 0 1 0
	To convert the decimal value 23 to a binvec value using four bits, then the result uses five bits. This is the minimum number of bits required to represent the number.
	dec2binvec(23,4) ans = 1 1 1 0 1
See Also	binvec2dec

Purpose	Remove device objects,	channels, or lines from data acquisition engine	
Syntax	<pre>delete(obj) delete(obj.Channel(index)) delete(obj.Line(index))</pre>		
		the legacy interface on 64–bit MATLAB. See ce" to acquire and generate data.	
Arguments	obj obj.Channel(index)	A device object or array of device objects. One or more channels contained by obj.	
	obj.Line(index)	One or more lines contained by obj.	
Description	delete(obj) removes the device object specified by obj from the engine. If obj contains channels or lines, they are removed as well. If obj is the last object accessing the driver, then the driver and associated adaptor are unloaded.		
		dex)) removes the channels specified by index rom the engine. As a result, the remaining dexed.	
)) removes the lines specified by index and the engine. As a result, the remaining lines	
Tips	Deleting device objects,	channels, and lines follows these rules:	
	acquisition engine by	ice objects, channels, or lines from the data at not from the MATLAB workspace. To remove orkspace, use the clear function.	
		s to a device object exist in the workspace, then object from the engine invalidates the remaining	

references. These remaining references should be cleared from the workspace with the clear function.

• If you delete a device object while it is running, then a warning is issued before it is deleted. You cannot delete a device object while it is logging or sending data.

You should use delete at the end of a data acquisition session. You can quickly delete all existing device objects with the command delete(daqfind).

If you use the help command to display the file help for delete, then you must supply the pathname shown below.

help daq/daqdevice/delete

Examples National Instruments

Create the analog input object ai for a National Instruments board, add hardware channels 0-7 to it, and make a copy of hardware channels 0 and 1.

```
ai = analoginput('nidaq','Dev1');
addchannel(ai,0:7);
ch = ai.Channel(1:2);
```

To delete hardware channels 0 and 1:

delete(ch)

These channels are deleted from the data acquisition engine and are no longer associated with ai. The remaining channels are reindexed such that the indices begin at 1 and increase monotonically to 6. To delete ai:

delete(ai)

Sound Card

Create the analog input object AI1 for a sound card, and configure it to operate in stereo mode.

```
AI1 = analoginput('winsound');
addchannel(AI1,1:2);
```

You can now configure the sound card for mono mode by deleting hardware channel 2.

delete(AI1.Channel(2))

If hardware channel 1 is deleted instead, an error is returned.

See Also clear | dagreset

digitalio

Purpose	Create digital I/O object		
Syntax	DIO = digitalio(' <i>adaptor</i> ',ID) Note You cannot use the legacy interface on 64-bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
Arguments	'adaptor'	The hardware driver adaptor name. The supported adaptors are advantech, mcc, nidaq, and parallel.	
	ID	The hardware device identifier.	
	DIO	The digital I/O object.	
Description	DIO = digitalio(' <i>adaptor</i> ', ID) creates the digital I/O object DIO for the specified <i>adaptor</i> and for the hardware device with device identifier ID. ID can be specified as an integer or a string.		
	version of the for Traditiona	raditional NI-DAQ adaptor will be deprecated in a future toolbox. If you create a Data Acquisition Toolbox™ object Il NI-DAQ adaptor beginning in R2008b, you will receive a ng that this adaptor will be removed in a future release.	
	If you create a beginning in I adaptor will b	daptor will be deprecated in a future version of the toolbox. a Data Acquisition Toolbox [™] object for 'parallel' R2008b, you will receive a warning stating that this e removed in a future release. See the supported hardware mathworks.com/products/daq/supportedio.html for tion.	

More About Creating Digital I/O Objects

Tips

- When a digital I/O object is created, it does not contain any hardware lines. To execute the device object, hardware lines must be added with the addline function.
- You can create multiple digital I/O objects that are associated with a particular digital I/O subsystem. However, you can execute only one of these digital I/O objects at a time for the generation of timing events.
- The digital I/O object exists in the data acquisition engine and in the MATLAB workspace. If you create a copy of the device object, it references the original device object in the engine.
- The Name property is automatically assigned a descriptive name that is produced by concatenating *adaptor*, ID, and -DIO. You can change this name at any time.

Note When you create a digital input or output object, it consumes system resources. To avoid this issue, make sure that you do not create objects in a loop. If you must create objects in a loop, make sure you delete them within the loop.

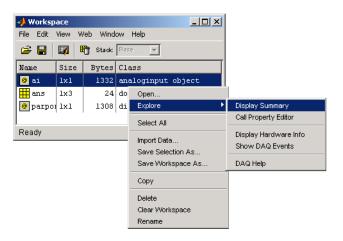
The Parallel Port Adaptor

The toolbox provides basic DIO capabilities through the parallel port. The PC supports up to three parallel ports that are assigned the labels LPT1, LPT2, and LPT3. You can use only these ports. If you add additional ports to your system, or if the standard ports do not use the default memory resources, they will not be accessible by the toolbox. For more information about the parallel port, refer to "Parallel Port Characteristics".

More About the Hardware Device Identifier

When data acquisition devices are installed, they are assigned a unique number, which identifies the device in software. The device identifier is typically assigned automatically and can usually be manually changed using a vendor-supplied device configuration utility. National Instruments refers to this number as the device number.

There are two ways you can determine the ID for a particular device:


- Type daqhwinfo('adaptor').
- Open the vendor-supplied device configuration utility.

Properties	Common Properties	
	Line	Contain hardware lines added to device object
	Name	Specify descriptive name for the channel
	Running	Indicate whether device object is running
	Тад	Specify device object label
	TimerFcn	Specify callback function to execute when predefined time period passes
	TimerPeriod	Specify time period between timer events
	Туре	Indicate device object type, channel, or line
	UserData	Store data to associate with device object
	Line Properties	
	Direction	Specify whether line is for input or output
	HwLine	Specify hardware line ID

	Index	MATLAB index of hardware channel or line
	LineName	Specify descriptive line name
	Parent	Indicate parent (device object) of channel or line
	Port	Specify port ID
	Туре	Indicate device object type, channel, or line
Examples	Create a digital I/O object for a Nat as 'Dev1'.	ional Instruments device defined
	DIO = digitalio('nidaq','Dev1');
	Create a digital I/O object for a Mea as '1'.	surement Computing device defined
	<pre>DIO = digitalio('mcc','1');</pre>	
	Create a digital I/O object for paral	lel port LPT1.
	<pre>DIO = digitalio('parallel','LF</pre>	PT1');
See Also	addline daqhwinfo Name	

Purpose	Summary information for	device objects, channels, or lines
Syntax	disp(obj) disp(obj.Channel(index)) disp(obj.Line(index))	
		e legacy interface on 64–bit MATLAB. See to acquire and generate data.
Arguments	obj	A device object.
	obj.Channel(index)	One or more channels contained by obj.
	obj.Line(index)	One or more lines contained by obj.
Description	obj, and any channels or	ary information for the specified device object lines contained by obj. Typing obj at the ces the same summary information.
	specified channels contain) displays summary information for the ned by obj. Typing obj.Channel(index) at oduces the same summary information.
		splays summary information for the specified yping obj.Line(index) at the Command he summary information.
Tips		yping the device object at the MATLAB excluding the semicolon when
	• Creating a device objec	t
	• Adding channel or lines	s
	• Configuring property va	alues using the dot notation

As shown below, you can also display summary information via the Workspace browser by right-clicking a device object, a channel object, or a line object and selecting **Explore > Display Summary** from the context menu.

Access context (pop-up) menus by right-clicking a device object.

Examples

All the commands shown below produce summary information for the device object AI or the channels contained by AI.

```
AI = analoginput('winsound')
chans = addchannel(AI,1:2)
AI.SampleRate = 44100
AI.Channel(1).ChannelName = 'CH1'
chans
```

flushdata

Purpose	Remove anal	og input data from data acquisition engine	
Syntax	flushdata(obj) flushdata(obj,' <i>mode</i> ')		
	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
Arguments	obj	An analog input object or array of analog input objects.	
	'mode'	Specifies how much data is removed from the engine.	
Description		oj) removes all data from the data acquisition engine and mplesAvailable property to zero.	
	flushdata(obj,' <i>mode</i> ') removes data from the data acquisition engine depending on the value of <i>mode</i> :		
		all, then flushdata removes all data from the engine amplesAvailable property is set to 0. This is the same ata(obj).	
	acquired of when the SamplesPe	triggers, then flushdata removes the data luring one trigger. triggers is a valid choice only TriggerRepeat property is greater than 0 and the erTrigger property is not inf. The data associated with trigger is removed first.	
Examples		nalog input object ai for a National Instruments board and e channels 0-7 to it.	
	ai = analog addchannel(jinput('nidaq','Dev1'); ai,0:7);	

A 2-second acquisition is configured and the device object is executed.

```
set(ai, 'SampleRate',2000)
duration = 2;
ActualRate = get(ai, 'SampleRate');
set(ai, 'SamplesPerTrigger',ActualRate*duration)
start(ai)
wait(ai,duration+1)
```

Four thousand samples will be acquired for each channel group member. To extract 1000 samples from the data acquisition engine for each channel:

```
data = getdata(ai,1000);
```

You can use flushdata to remove the remaining 3000 samples from the data acquisition engine.

```
flushdata(ai)
ai.SamplesAvailable
ans =
0
```

See Also getdata | SamplesAvailable | SamplesPerTrigger | TriggerRepeat

Purpose	Device object properties
Syntax	<pre>out = get(obj) out = get(obj.Channel(index)) out = get(obj.Line(index)) out = get(obj,'PropertyName') out = get(obj.Channel(index),'PropertyName') out = get(obj.Line(index),'PropertyName') get()</pre>

Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.

Arguments	obj obj.Channel(index) obj.Line(index) ' <i>PropertyNam</i> e'	A device object or array of device objects. One or more channels contained by obj. One or more lines contained by obj. A property name or a cell array of property names.
Description	<pre>on out = get(obj) returns the structure out, where each field name is the name of a property of obj and each field contains the value of that property. out = get(obj.Channel(index)) returns the structure out, where each field name is the name of a channel property of obj and each field contains the value of that property. out = get(obj.Line(index)) returns the structure out, where each field name is the name of a line property of obj and each field contains the value of that property.</pre>	
		rtyName') returns the value of the property Name to out. If PropertyName is replaced by a

	1-by-n or n-by-1 cell array of strings containing property names, then get returns a 1-by-n cell array of values to out. If obj is an array of data acquisition objects, then out will be an m-by-n cell array of property values where m is equal to the length of obj and n is equal to the number of properties specified.
	<pre>out = get(obj.Channel(index), 'PropertyName') returns the value of PropertyName to out for the specified channels contained by obj. If multiple channels and multiple property names are specified, then out is an m-by-n cell array where m is the number of channels and n is the number of properties.</pre>
	<pre>out = get(obj.Line(index), 'PropertyName') returns the value of PropertyName to out for the specified lines contained by obj. If multiple lines and multiple property names are specified, then out is an m-by-n cell array where m is the number of lines and n is the number of properties.</pre>
	get() displays all property names and their current values for the specified device object, channel, or line. Base properties are displayed first followed by device-specific properties.
Tips	If you use the help command to display the file help for get, then you must supply the pathname shown below. help daq/daqdevice/get
	heip dag/dagdevice/get
Examples	Create the analog input object ai for a sound card and configure it to operate in stereo mode.
	ai = analoginput('winsound'); addchannel(ai,1:2);
	The commands shown below are some of the ways you can use get to return property values.
	chan = get(ai,'Channel'); out = get(ai,{'SampleRate','TriggerDelayUnits'}); out = get(ai);

```
get(chan(1),'Units')
get(chan,{'Index','HwChannel','ChannelName'})
```

See Also set | setverify

Purpose	Extract analog input data, time, and event information from data acquisition engine
Syntax	<pre>data = getdata(obj) data = getdata(obj,samples) data = getdata(obj,samples,'type') [data,time] = getdata() [data,time,abstime] = getdata() [data,time,abstime,events] = getdata() [data,] = getdata(obj, 'P1', V1, 'P2', V2,)</pre>

Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.

Arguments	obj	An analog input object.
	samples	The number of samples to extract. If samples is not specified, the number of samples extracted is given by the SamplesPerTrigger property.
	'type'	Specifies the format of the extracted data as double (the default) or as native.
	data	An m-by-n array, where m is the number of samples extracted and n is the number of channels contained by obj.
	time	An m-by-1 array of relative time values in seconds, where m is the number of samples extracted. time = 0 is defined as the point at which data logging begins, i.e., when the Logging property of obj is set to On. Measurement of time, with respect to O, continues until the acquisition is stopped, i.e., when the Logging property of obj is set to Off.

abstime	The absolute time of the first trigger returned as a clock vector. This value is identical to the value stored by the InitialTriggerTime property.
events	A structure containing a list of events that occurred during the time period the samples were extracted.

Description data = getdata(obj) extracts the number of samples specified by the SamplesPerTrigger property for each channel contained by obj. data is an m-by-n array, where m is the number of samples extracted and n is the number of channels.

data = getdata(obj,samples) extracts the number of samples specified
by samples for each channel contained by obj.

data = getdata(obj,samples,'type') extracts the number of samples
specified by samples in the format specified by type for each channel
contained by obj.

[data,time] = getdata(...) returns data as sample-time pairs. time is an m-by-1 array of relative time values, where m is the number of samples returned in data. Each element of time indicates the relative time, in seconds, of the corresponding sample in data, measured with respect to the first sample logged by the engine.

[data,time,abstime] = getdata(...) extracts data as sample-time pairs and returns the absolute time of the trigger. The absolute time is returned as a clock vector and is identical to the value stored by the InitialTriggerTime property.

[data,time,abstime,events] = getdata(...) extracts data as sample-time pairs, returns the absolute time of the trigger, and returns a structure containing a list of events that occurred during the time period the samples were extracted. The events returned are a sub set of those stored by the EventLog property.

[data,...] = getdata(obj, 'P1', V1, 'P2', V2,...) specifies the number of samples to be returned, the format of the data matrix, and whether to return a tscollection object.

Property	Description
Samples	Specify the number of samples to return.
DataFormat	Specify the data format as double (default) or native.
OutputFormat	Specify the output format as matrix (default) or tscollection.

The following table shows a summary of properties.

Note When the ClockSource property for this function is set to one of the External options, the timing will be controlled externally and the values returned in the time variable will not accurately reflect the actual relative time of each sample. It is however an approximation based on the SampleRate you have configured.

More About getdata

Tips

- In most circumstances, getdata returns all requested data and does not miss any samples. In the unlikely event that the engine cannot keep pace with the hardware device, it is possible that data is missed. If data is missed, the DataMissedFcn property is called and the device object is stopped.
- getdata is a *blocking* function because it returns execution control to the MATLAB workspace only when the requested number of samples is extracted from the engine for each channel group member.
- You can issue ^C (Ctrl+C) while getdata is blocking. This will not stop the acquisition but will return control to the MATLAB software.
- The amount of data that you can extract from the engine is given by the SamplesAvailable property.
- It is a good practice to use a wait command before your getdata command if the getdata is going to get all data returned by the

analog input subsystem. For example, if your analog input object is ai and you have set duration to be the number of seconds for the acquisition, you could add the following line right before the getdata:

wait(ai,duration+1)

- Setting the OutputFormat property to tscollection causes getdata to return a tscollection object. In this case, only the data left-hand argument is used.
- For more information on using the Time Series functionality, see "Example: Time Series Objects and Methods" in the MATLAB documentation.

More About Extracting Data From the Engine

- After the requested data is extracted from the engine, the SamplesAvailable property value is automatically reduced by the number of samples returned.
- If the requested number of samples is greater than the samples to be acquired, then an error is returned.
- If the requested data is not returned in the expected amount of time, an error is returned. The expected time to return data is given by the time it takes the engine to fill one data block plus the time specified by the Timeout property.
- If multiple triggers are included in a single getdata call, a NaN is inserted into the returned data and time arrays and the absolute time returned is given by the first trigger.
- When you use multiple immediate triggers Data Acquisition Toolbox cannot determine the "dead" time between triggers. Because of this, the toolbox assumes the "dead" time = 1 sample. For example if the sample rate is 1000 samples per second the toolbox assumes the "dead" time between triggers is one millisecond. The time argument returned by getdata reflects this assumption.

Examples Create the analog input object ai for a National Instruments board and add hardware channels 0 to 3 to it.

```
ai = analoginput('nidaq','Dev1');
addchannel(ai,0:3);
```

Configure a 1-second acquisition with SampleRate set to 1000 samples per second and SamplesPerTrigger set to 1000 samples per trigger.

```
set(ai,'SampleRate',1000)
set(ai,'SamplesPerTrigger',1000)
start(ai)
```

The following getdata command blocks execution control until all sample-time pairs, the absolute time of the trigger, and any events that occurred during the getdata call are returned.

```
wait(ai,1)
[data,time,abstime,events] = getdata(ai);
```

data is returned as a 1000-by-4 array of doubles, time is returned as a 1000-by-1 vector of relative times, abstime is returned as a clock vector, and events is returned as a 3-by-1 structure array.

To extract the 1000 data samples from hardware channel 0 only, examine the first column of data.

chan0_data = data(:,1);

The three events returned are the start event, the trigger event, and the stop event. To return specific event information about the stop event, you must access the Type and Data fields.

```
EventType = events(3).Type;
EventData = events(3).Data;
```

```
See Also flushdata | getsample | peekdata | timeseries | tscollection
| wait | DataMissedFcn | EventLog | SamplesAvailable |
SamplesPerTrigger | Timeout
```

<u>getsample</u>

Purpose	Immediatel	y acquire one analog input sample
Syntax	sample = ge	tsample(obj)
		cannot use the legacy interface on 64–bit MATLAB. See sed Interface" to acquire and generate data.
Arguments	obj	An analog input object.
	sample	A row vector containing one sample for each channel contained by obj.
Description		etsample(obj) immediately returns a row vector containing for each channel contained by Obj.
Tips	Using getsample is a good way to test your analog input configuration. Additionally:	
		e does not store samples in, or extract samples from, the aisition engine.
	• You can added to	execute getsample at any time after channels have been obj.
	• .	e is not supported for sound cards and Dynamic Signal on and Generation (DSA) cards.
	you access N	to the "Hardware Limitations by Vendor" section before National Instruments devices with the NI-DAQmx adaptor asly from multiple applications.

Examples Create the analog input object ai and add eight channels to it. ai = analoginput('nidaq','Dev1'); ch = addchannel(ai,0:7); The following command returns one sample for each channel. sample = getsample(ai); See Also getdata | peekdata

getvalue

Purpose	Read values from di	gital input and output lines	
Syntax		<pre>out = getvalue(obj) out = getvalue(obj.Line(index))</pre>	
		se the legacy interface on 64–bit MATLAB. See rface" to acquire and generate data.	
Arguments	obj	A digital I/O object.	
	obj.Line(index) out	One or more lines contained by obj. A binary vector.	
Description	out = getvalue(obj by obj as a binary v) returns the current value from all lines contained vector to out.	
	out = getvalue(obj lines specified by ob	.Line(index)) returns the current value from the oj.Line(index).	
Tips	More About Read	ding Values from Lines	
	is constructed wit and the most sign	returned as a binary vector (binvec). A binvec value th the least significant bit (LSB) in the first column nificant bit (MSB) in the last column. For example, per 23 is written as the binvec value [1 1 1 0 1].	
	 You can convert a binvec2dec funct 	a binvec value to a decimal value with the tion.	
	acquisition engine	nes from a port-configurable device, the data e will automatically read from all the lines even if ained by the device object.	
	-	ns lines configured for output, getvalue returns the put value set by putvalue. If you have not called	

	putvalue since you created the digitalio object, then getvalue returns a 0. getvalue cannot ascertain the current output value on the hardware.
	Note Refer to the "Hardware Limitations by Vendor" section before you access National Instruments devices with the NI-DAQmx adaptor simultaneously from multiple applications.
Examples	Create the digital I/O object dio and add eight input lines to it.
	dio = digitalio('nidaq','Dev1'); lines = addline(dio,0:7,'in');
	To return the current values from all lines contained by dio as a binvec value:
	<pre>out = getvalue(dio);</pre>
See Also	binvec2dec

inspect

Purpose	Open Property Inspector	
Syntax	<pre>inspect(obj)</pre>	
	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.	
Arguments	obj An object or an array of objects.	
Description	<pre>inspect(obj) opens the Property Inspector and allows you to inspect and set properties for the object obj.</pre>	
Tips	You can also open the Property Inspector via the Workspace browser by double-clicking an object in the Workspace list.	
	The Property Inspector does not automatically update its display. To refresh the Property Inspector, open it again.	
Examples	Create the analog input object ai for a sound card and add two channels.	
	ai = analoginput('winsound'); addchannel(ai,1:2);	
	Open the Property Inspector for the object ai.	
	inspect(ai)	
	The Property Inspector is shown below.	
	You can expand the properties that are arrays of objects. In the following figure, the Channel property is expanded to enumerate the individual channel objects that make up this property.	
	You can also expand these individual channel objects to display their own properties, as shown for channel 1.	

Property Inspector	- O X
📦 analoginput	
	16.0
BufferingConfig	Ix2 double array]
BufferingMode	▼ Auto
Channel	
∏ <u>–</u> 1	
ChannelName	Left
HwChannel	1.0
	1
- InputRange	[][-1.0; 1.0]
NativeOffset	0.0
- NativeScaling	0.0
+- Parent	daq.analoginput_winsound
SensorRange	[-1.0; 1.0]
Type	Channel
Units	Volts
UnitsRange	Voits [-1.0; 1.0]
±-2	E [[-1.0, 1.0]
ChannelSkew	0.0
ChannelSkewMode	
ClockSource	▼ None
	▼ Internal
- EventLog	[0x0_double array]
- InitialTriggerTime	[1x6 double array]
- InputType	AC-Coupled
LogFileName	logfile.daq
– LogToDiskMode	Overwrite
Logging	Off
- LoggingMode	Memory
— ManualTriggerHwOn	▼ Start
- Name	winsound0-Al
Running	Off
- SampleRate	8000.0
- SamplesAcquired	0.0
- SamplesAcquiredFcnCount	1024.0
- SamplesAvailable	0.0
- SamplesPerTrigger	8000.0
StandardSampleRates	▼ On
— Tag	null
Timeout	1.0
- TimerPeriod	0.1
- TriggerDelay	0.0
- TriggerDelayUnits	 Seconds
- TriggerRepeat	0.0
- TriggersExecuted	0.0
- Type	Analog Input
🖵 UserData	=

See Also

daqfind | daqhelp | get | propinfo | set

ischannel

Purpose	Check for channels		
Syntax	<pre>out = ischannel(obj.Channel(index))</pre>		
	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
Arguments	<pre>obj.Channel(index) One or more channels contained by obj. out A logical value.</pre>		
Description	<pre>out = ischannel(obj.Channel(index)) returns a logical 1 to out if obj.Channel(index) is a channel. Otherwise, a logical 0 is returned.</pre>		
Tips	<pre>ischannel does not determine if channels are valid (associated with hardware). To check for valid channels, use the isvalid function. Typically, you use ischannel directly only when you are creating your own files.</pre>		
Examples	Suppose you create the function myfunc for use with Data Acquisition Toolbox software. If myfunc is passed one or more channels as an input argument, then the first thing you should do in the function is check if the argument is a channel.		
	function myfunc(chan) % Determine if a channel was passed. if ~ischannel(chan) error('The argument passed is not a channel.'); end		
	You can examine Data Acquisition Toolbox software files for examples that use ischannel.		

See Also isvalid

isdioline

Purpose	Check for lines	
Syntax	<pre>out = isdioline(obj.Line(index))</pre>	
	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.	
Arguments	obj.Line(index)One or more lines contained by obj.outA logical value.	
Description	<pre>out = isdioline(obj.Line(index)) returns a logical 1 to out if obj.Line(index) is a line. Otherwise, a logical 0 is returned.</pre>	
Tips	<pre>isdioline does not determine if lines are valid (associated with hardware). To check for valid lines, use the isvalid function. Typically, you use isdioline directly only when you are creating your own files.</pre>	
Examples	Suppose you create the function myfunc for use with Data Acquisition Toolbox software. If myfunc is passed one or more lines as an input argument, then the first thing you should do in the function is check if the argument is a line.	
	<pre>function myfunc(line) % Determine if a line was passed. if ~isdioline(line) error('The argument passed is not a line.'); end</pre>	
	You can examine Data Acquisition Toolbox software files for examples that use isdioline.	

See Also isvalid

islogging

Purpose	Determine whether analog input object is logging data			
Syntax	<pre>bool = islogging(obj)</pre>			
	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.			
Description	<pre>bool = islogging(obj) returns true if the analog input object obj is logging data, otherwise false. An analog input object is logging if the value of its Logging property is set to On.</pre>			
	If obj is an array of analog input objects, bool is a logical array where each element in bool represents the corresponding element in obj. If an object in obj is logging data, islogging sets the corresponding element in bool to true, otherwise false. If any of the analog input objects in obj is invalid, islogging returns an error.			
Examples	<pre>Create an analog input object and add a channel. ai = analoginput('winsound'); addchannel(ai, 1)</pre>			
	To put the analog input object in a logging state, start acquiring data. The example acquires 10 seconds of data to increase the amount of time that the object remains in the logging state.			
	set(ai,'SamplesPerTrigger', 10*get(ai,'SampleRate')) start(ai)			
	When the call to the start function returns, and the object is still acquiring data, use islogging to check the state of the object.			
	bool = islogging(ai) bool = 1			

Create a second analog input object.

```
ai2 = analoginput('winsound');
```

Start one of the analog input objects again, such as ai, and use islogging to determine which of the two objects is logging.

```
start(ai)
bool = islogging([ai ai2])
bool =
    1 0
```

See Also isrunning | issending | start | stop | Logging | LoggingMode

isrunning

Purpose	Determine whether device object is running		
Syntax	<pre>bool = isrunning(obj)</pre>		
	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
Description	<pre>bool = isrunning(obj) returns true if the device object obj is running, otherwise false. A device object is running if the value of its Running property is set to On.</pre>		
	If obj is an array of device objects, bool is a logical array where each element in bool represents the corresponding element in obj. If an object in obj is running, the isrunning function sets the corresponding element in bool to true, otherwise false. If any of the device objects in obj is invalid, isrunning returns an error.		
Examples	Create an analog input object and add a channel.		
	ai = analoginput('winsound'); addchannel(ai, 1)		
	To put the analog input object in a running state, configure a manual trigger and then start the object.		
	set(ai, 'TriggerType', 'Manual') start(ai)		
	Use isrunning to check the state of the object.		
	<pre>bool = isrunning(ai) bool = 1</pre>		
	Create an analog output object.		
	<pre>ao = analogoutput('winsound');</pre>		

Use isrunning to determine which of the two objects is running.

issending

Purpose	Determine whether analog output object is sending data		
Syntax	<pre>bool = issending(obj)</pre>		
	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
Description	<pre>bool = issending(obj) returns true if the analog output object obj is sending data to the hardware device, otherwise false. An analog output object is sending if the value of its Sending property is set to On.</pre>		
	If obj is an array of analog output objects, bool is a logical array where each element in bool represents the corresponding element in obj. If an object in obj is sending, the issending function sets the corresponding element in bool to true, otherwise false. If any of the analog output objects in obj is invalid, issending returns an error.		
Examples	Create an analog output object and add a channel.		
	ao = analogoutput('winsound'); addchannel(ao, 1);		
	To put the analog output object in a sending state, start acquiring data. The example sends 10 seconds of data to increase the amount of time that the object remains in the sending state.		
	putdata(ao, ones(10*get(ao,'SampleRate'),1)); start(ao)		
	When the call to the start function returns, and the object is still sending data, use issending to check the state of the object.		
	<pre>bool = issending(ao) bool = 1</pre>		

Create a second analog output object.

```
ao2 = analogoutput('winsound');
```

Start one of the analog output objects again, such as **ao**, and use **issending** to determine which of the two objects is sending.

```
putdata(ao, ones(10*get(ao, 'SampleRate'),1));
start(ao)
bool = issending([ao ao2])
bool =
1 0
```

See Also islogging | isrunning | start | stop | Sending

isvalid

Purpose	Determine whether device objects, channels, or lines are valid		
Syntax	<pre>out = isvalid(obj) out = isvalid(obj.Channel(index)) out = isvalid(obj.Line(index))</pre>		
	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
Arguments	obj	A device object or array of device objects.	
		One or more channels contained by obj.	
	obj.Line(index) out	One or more lines contained by obj. A logical array.	
Description	out = isvalid(obj) returns a logical 1 to out if obj is a valid device object. Otherwise, a logical 0 is returned.		
		nnel(index)) returns a logical 1 to out if the obj.Channel(index) are valid. Otherwise, a	
		e(index)) returns a logical 1 to out if the lines index) are valid. Otherwise, a logical 0 is	
Tips		channels, and lines are no longer associated d should be cleared from the workspace with	
	Typically, you use isva own files.	alid directly only when you are creating your	

Examples Create the analog input object ai for a National Instruments board and add eight channels to it.

```
ai = analoginput('nidaq','Dev1');
ch = addchannel(ai,0:7);
```

To verify the device object is valid:

```
isvalid(ai)
ans =
1
```

To verify the channels are valid:

```
isvalid(ch)'
ans =
1 1 1 1 1 1 1 1
```

If you delete a channel, then isvalid returns a logical 0 in the appropriate location:

Typically, you use isvalid directly only when you are creating your own files. Suppose you create the function myfunc for use with Data Acquisition Toolbox software. If myfunc is passed the previously defined device object ai as an input argument,

```
myfunc(ai)
```

the first thing you should do in the function is check if ai is a valid device object.

```
function myfunc(obj)
% Determine if an invalid handle was passed.
if ~isvalid(obj)
```

isvalid

```
error('Invalid data acquisition object passed.');
end
```

You can examine Data Acquisition Toolbox software files for examples that use isvalid.

See Also clear | delete | ischannel | isdioline

Purpose	Length of device object, channel group, or line group		
Syntax	<pre>out = length(obj) out = length(obj.Channel) out = length(obj.Line)</pre>		
	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
Arguments	obj.Channel obj.Line out	A device object or array of device objects. The channels contained by obj. The lines contained by obj. A double.	
Description	<pre>out = length(obj) returns the length of the device object obj to out. out = length(obj.Channel) returns the length of the channel group contained by obj. out = length(obj.Line) returns the length of the line group contained by obj.</pre>		
Examples	Create the analog input object ai for a National Instruments board and add eight channels to it. ai = analoginput('nidaq','Dev1'); aich = addchannel(ai,0:7); Create the analog output object ao for a National Instruments board, add one channel to it, and create the device object array aiao. ao = analogoutput('nidaq','Dev1'); aoch = addchannel(ao,0);		

length

```
aiao = [ai ao]
                  Index:
                             Subsystem:
                                                  Name:
                                Analog Input
                                                     nidaqmxDev1-AI
                      1
                      2
                                Analog Output
                                                     nidaqmxDev1-A0
                  To find the length of aiao:
                  length(aiao)
                  ans =
                        2
                  To find the length of the analog input channel group:
                  length(aich)
                  ans =
                        8
See Also
                  size
```

Purpose	Load device objects, channels, or lines into MATLAB workspace		
Syntax	load file load file obj1 obj2 out = load('file','obj1','obj2',)		
	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
Arguments	file	The MAT-file name.	
	obj1 obj2	Device objects, an array of device objects, channels, or lines.	
	out	A structure containing the loaded device objects.	
Description	load file returns all variables from the MAT-file file into the MATLAB workspace.		
		obj2 returns the specified device objects from the nto the MATLAB workspace.	
	objects from the loading them in names of the loa	MAT-file file as a structure to out instead of directly to the workspace. The field names in out match the aded device objects. If no device objects are specified, es existing in the MAT-file are loaded.	
Tips	Loading device of	objects follows these rules:	
	• Unique device well as the er	e objects are loaded into the MATLAB workspace as ngine.	
	• If a loaded device object already exists in the engine but not the MATLAB workspace, the loaded device object automatically reconnects to the engine device object.		

- If a loaded device object already exists in the workspace or the engine but has different properties than the loaded object, then these rules are followed:
 - The read-only properties are automatically reset to their default values.
 - All other property values are given by the loaded object and a warning is issued stating that property values of the workspace object have been updated.
- If the workspace device object is running, then it is stopped before loading occurs.
- If identical device objects are loaded, then they point to the same device object in the engine. For example, if you saved the array
- x = [ai1 ai1 ai2]

only ai1 and ai2 are created in the engine, and x(1) will equal x(2).

- Values for read-only properties are restored to their default values upon loading. For example, the EventLog property is restored to an empty vector. Use the propinfo function to determine if a property is read only.
- Values for the BufferingConfig property when the BufferingMode property is set to Auto, and the MaxSamplesQueued property might not be restored to the same value because both these property values are based on available memory.

Note load is not used to read in acquired data that has been saved to a log file. You should use the dagread function for this purpose.

If you use the help command to display the help for load, then you must supply the pathname shown below.

help daq/private/load

Examples	This example illustrates the behavior of load when the loaded device object has properties that differ from the workspace object.		
	ai = analoginput('winsound'); addchannel(ai,1:2); save ai		
	ai.SampleRate = 10000; load ai Warning: Loaded object has updated property values.		
See Also	daqread propinfo save		

makenames

Purpose	List descriptive channel or line names		
Syntax	names = makenames('prefix',index)		
	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
Arguments	'prefix'	A string that constitutes the first part of the name.	
	index	Numbers appended to the end of prefix — any MATLAB vector syntax can be used to specify index as long as the numbers are positive.	
	names	An m-by-1 cell array of channel names where m is the length of index.	
Description	names = makenames('prefix',index) generates a cell array of descriptive channel or line names by concatenating prefix and index.		
Tips	You can pass names as an input argument to the addchannel or addline function.		
	If names contains more than one descriptive name, then the size of names must agree with the number of hardware channels specified in addchannel, or the number of hardware lines specified in addline.		
	begin with a	els or lines are to be referenced by name, then prefix must letter and contain only letters, numbers, and underscores. ne names can contain any character.	
Examples		nalog input object AI. You can use makenames to define ames for each channel that is to be added to AI.	
	AI = analog	AI = analoginput('nidaq','Dev1');	

	<pre>names = makenames('chan',1:8);</pre>	
	names is an eight-element cell array of channel names chan1, chan2,, chan8. You can now pass names as an input argument to the addchannel function.	
	<pre>addchannel(AI,0:7,names);</pre>	
See Also	addchannel addline	

muxchanidx

Purpose	Multiplexed scanned analog input channel index		
Syntax	scanidx = muxchanidx(obj,muxboard,muxidx) scanidx = muxchanidx(obj,absmuxidx)		
	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.		
Arguments	obj	An analog input object associated with a National Instruments Traditional NI-DAQ board.	
	muxboard	The multiplexer board.	
	muxidx	The index number of the multiplexed channel.	
	absmuxidx	The absolute index number of the multiplexed channel.	
	scanidx	The scanning index number of the multiplexed channel.	
Description	<pre>scanidx = muxchanidx(obj,muxboard,muxidx) returns the scanning index number of the multiplexed channel specified by muxidx. The multiplexer (mux) board is specified by muxboard. For each mux board, muxidx can range from 0-31 for differential inputs and 0-63 for single-ended inputs. muxboard and muxidx are vectors of equal length.</pre>		
	<pre>scanidx = muxchanidx(obj,absmuxidx) returns the scanning index number of the multiplexed channel specified by absmuxidx. absmuxid is the absolute index of the channel independent of the mux board.</pre>		
	that range bet index values the absolute index	ed inputs, the first mux board has absolute index values ween 0 and 63, the second mux board has absolute hat range between 64 and 127, the third mux board has values that range between 128 and 191, the fourth mux plute index values that range between 192 and 255. For	

	example, the absolute index value of the second single-ended channel on the fourth mux board (muxboard is 4 and muxidx is 1) is 193.			
Note The Traditional NI-DAQ adaptor will be deprecated in a future version of the toolbox. If you create a Data Acquisition Toolbox [™] object for Traditional NI-DAQ adaptor beginning in R2008b, you will receive a warning stating that this adaptor we removed in a future release. See the supported hardware page www.mathworks.com/products/daq/supportedio.html for mo information.				
Tips	scanidx identifies the column number of the data returned by getdata and peekdata.			
	Refer to the <i>AMUX-64T User Manual</i> for more information about adding mux channels based on hardware channel IDs and the number of mux boards used.			
Examples	Create the analog input object ai for a National Instruments board that is connected to four AMUX-64T multiplexers, and add 256 channels to ai using addmuxchannel.			
	ai = analoginput('nidaq',1); ai.InputType = 'SingleEnded'; ai.NumMuxBoards = 4; addmuxchannel(ai);			
	The following two commands return a scanned index value of 14.			
	scanidx = muxchanidx(ai,4,1); scanidx = muxchanidx(ai,193);			
See Also	addmuxchannel			

obj2mfile

Purpose	Convert device objects, channels, or lines to MATLAB code		
Syntax	<pre>obj2mfile(obj,'file') obj2mfile(obj,'file','syntax') obj2mfile(obj,'file','all') obj2mfile(obj,'file','syntax','all')</pre>		
		annot use the legacy interface on 64–bit MATLAB. See sed Interface" to acquire and generate data.	
Arguments	obj	A device object, array of device objects, channels, or lines.	
	'file'	The file that the MATLAB code is written to. The full pathname can be specified. If an extension is not specified, the .m extension is used.	
	'syntax'	Syntax of the converted the MATLAB code. By default, the set syntax is used. If dot is specified, then the subscripted referencing syntax is used. If named is specified, then named referencing is used (if defined).	
	'all'	If all is specified, all properties are written to file. If all is not specified, only properties that are not set to their default values are written to file.	
Description	using the se	bj, 'file') converts obj to the equivalent MATLAB code t syntax and saves the code to file. By default, only those nat are not set to their default values are written to file.	
	MATLAB co for syntax c	bj,'file','syntax') converts obj to the equivalent de using syntax and saves the code to file. The values an be set, dot, or named. set uses the set syntax, dot pted assignment (dot notation), and named uses named (if defined).	

	obj2mfile(obj,'file',' all ') converts obj to the equivalent MATLAB code using the set syntax and saves the code to file. all specifies that all properties are written to file.
	obj2mfile(obj,'file','syntax',' all ') converts obj including all of obj's properties to the equivalent MATLAB code using syntax and saves the code to file.
Tips	If the UserData property is not empty or if any of the callback properties are set to a cell array of values or a function handle, then the data stored in those properties is written to a MAT-file when the object is converted and saved. The MAT-file has the same name as the file containing the object code (see the example below).
	You can recreate the saved device objects by typing the name of the file at the Command Window. You can also recreate channels or lines, by typing the name of the file with a device object as the only input.
Examples	Create the analog input object ai for a sound card, add two channels, and set values for several properties.
	ai = analoginput('winsound'); addchannel(ai,1:2); set(ai,'Tag','myai','TriggerRepeat',4) set(ai,'StartFcn',{@mycallback,2,magic(10)})
	The following command writes MATLAB code to the files myai.m and myai.mat.
	obj2mfile(ai,'myai.m','dot')
	myai.m contains code that recreates the analog input code shown above using the dot notation for all properties that have their default values changed. Because StartFcn is set to a cell array of values, this property appears in myai.m as
	ai.StartFcn = startfcn1;
	and is saved in myai.mat as

startfcn1 = {@mycallback,2,magic(10)};

To recreate ai and assign the device object to a new variable ainew:

ainew = myai;

The associated MAT-file, myai.mat, is automatically loaded.

Purpose	Preview most recent acquired analog input data
Syntax	data = peekdata(obj,samples) data = peekdata(obj,samples,' <i>type</i> ')

Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.

Arguments	obj	An analog input object.
	samples	The number of samples to preview for each channel contained by obj.
	'type'	Specifies the format of the extracted data as double (the default) or as native.
	data	An m-by-n matrix where m is the number of samples and n is the number of channels.
Description	data = $peekdata(obj,samples)$ returns the latest number of samples specified by samples to data.	
	samples specifi channel contain returned in the	ata(obj,samples,'type') returns the number of ed by samples in the format specified by type for each ned by obj. If type is specified as native, the data is a native data format of the device. If type is specified as fault), the data is returned as doubles.
Tips	More About	Using peekdata
	returns cont	ata, peekdata is a <i>nonblocking</i> function that immediately rol to the MATLAB workspace. Because peekdata does ecution control, data might be missed or repeated.
	-	kes a "snapshot" of the most recent acquired data and love samples from the data acquisition engine. Therefore,

the SamplesAvailable property value is not affected when peekdata is called.

Rules for Using peekdata

- You can call peekdata before a trigger executes. Therefore, peekdata is useful for previewing data before it is logged to the engine or to a disk file.
- In most cases, you will call peekdata while the device object is running. However, you can call peekdata once after the device object stops running.
- If samples is greater than the number of samples currently acquired, all available samples are returned with a warning message stating that the requested number of samples were not available.
- If you start an analog input object and LoggingMode is Memory or Disk&Memory, extract the acquired data from the engine, using getdata. You can also flush it out using flushdata. If you do not extract or flush data, you receive a DataMissed event when the amount of acquired data reaches the MaxBytes limit for the object as seen by daqmem. The acquisition then stops.

Examples

Create the analog input object ai for a National Instruments board, add eight input channels, and configure ai for a two-second acquisition.

```
ai = analoginput('nidaq','Dev1');
addchannel(ai,0:7);
set(ai,'SampleRate',2000)
set(ai,'SamplesPerTrigger',4000)
```

After issuing the start function, you can preview the data.

```
start(ai)
data = peekdata(ai,100);
```

peekdata returns 100 samples of data for each of the eight channels added to the object. If 100 samples are not available, then whatever

samples are available will be returned and a warning message is issued. The data is not removed from the data acquisition engine.

See Also daqmem | flushdata | getdata | getsample | SamplesAvailable

propinfo

Purpose	Property characteri	stics for device objects, channels, or lines
Syntax	out = propinfo(obj out = propinfo(obj	
		use the legacy interface on 64–bit MATLAB. See erface" to acquire and generate data.
Arguments	obj	A device object, channels, or lines.
	'PropertyName'	A valid obj property name.
	out	A structure whose field names are the property names for obj (if <i>PropertyName</i> is not specified).
Description) returns the structure out whose field names are for obj. Each property name in out contains the
	Field Name	Description
	Туре	The property data type. Possible values are any, callback, double, and string.
	Constraint	The type of constraint on the property value. Possible values are bounded, callback, enum, and none.
	ConstraintValue	The property value constraint. The constraint can be a range of valid values or a list of valid string
		values.

Field Name	Description
ReadOnly	Indicates when the property is read-only. Possible values are always, never, and whileRunning.
DeviceSpecific	If the property is device-specific, a 1 is returned. If a 0 is returned, the property is supported for all device objects of a given type.

out = propinfo(obj, 'PropertyName') returns the structure out for the property specified by PropertyName. If PropertyName is a cell array of strings, a cell array of structures is returned for each property.

Examples Create the analog input object **ai** for a sound card and configure it to operate in stereo mode.

```
ai = analoginput('winsound');
addchannel(ai,1:2);
```

To capture all property information for all common ai properties:

out = propinfo(ai);

To display the default value for the SampleRate property:

```
out.SampleRate.DefaultValue
ans =
8000
```

To display all the property information for the InputRange property:

propinfo

See Also daqhelp

Purpose	Queue analo	og output data in engine for eventual output	
Syntax	putdata(obj,data)		
		annot use the legacy interface on 64–bit MATLAB. See sed Interface" to acquire and generate data.	
Arguments	obj	An analog output object.	
	data	The data to be queued in the engine.	
Description	putdata(obj,data) queues the data specified by data in the engine for eventual output to the analog output subsystem. data must consist of a column of data for each channel contained by obj. That is, data must be an m-by-n matrix, where m rows correspond to the number of samples and n columns correspond to the number of channels in obj.		
	data can consist of doubles or native data types but cannot contain NaNs. data must contain a column of data for each channel contained in obj. If data contains any data points that are not within the UnitsRange of the channel it pertains to, the data points will be clipped to the bounds of the UnitsRange property.		
	tscollection obj. If data obj. If the t sampled at a	a tscollection object or timeseries object. If data is a on object, there must be one timeseries per channel in is a timeseries object, there must be only one channel in scollection or timeseries object contains gaps, or is a different rate than the SampleRate of obj, the data will be t the rate of obj using a zero order hold.	
		formation on using the Time Series functionality, see Fime Series Objects and Methods" in the MATLAB fon.	

putdata

Tips

More About Queuing Data

- Data must be queued in the engine before obj is executed.
- putdata is a *blocking* function because it returns execution control to the MATLAB workspace only when the requested number of samples is queued in the engine for each channel group member.
- If the value of the RepeatOutput property is greater than 0, then all queued data is automatically requeued until the RepeatOutput value is reached. RepeatOutput must be configured before start is issued.
- After obj executes, you can continue to queue data unless RepeatOutput is greater than 0.
- Due to buffering constraints on certain devices, additional data queued close to the termination of the previous data may not be output to the device. To insure that all data is output, queue additional data well before the device has output all data.
- You can queue data in the engine until the value specified by the MaxSamplesQueued property is reached, or the limitations of your hardware or computer are reached.
- You should not modify the BitsPerSample, InputRange, SensorRange, and UnitsRange properties after calling putdata. If these properties are modified, all data is deleted from the data acquisition engine. If you add a channel after calling putdata, all data will be deleted from the buffer.
- The timeseries object must contain a single column of data.

More About Outputting Data

- Data is output as soon as a trigger occurs.
- An error is returned if a NaN is included in the data stream.
- You can specify data as the native data type of the hardware.
- If the output data is not within the range specified by the OutputRange property, then the data is clipped.

• The SamplesOutput property keeps a running count of the total number of samples that have been output per channel. • The SamplesAvailable property tells you how many samples are ready to be output from the engine per channel. After data is output, SamplesAvailable is automatically reduced by the number of samples sent to the hardware. **Examples** Create the analog output object **ao** for a National Instruments board, add two output channels to it, and generate 10 seconds of data to be output. ao = analogoutput('nidaq','Dev1'); ch = addchannel(ao, 0:1);set(ao, 'SampleRate', 1000) data = linspace(0, 1, 10000)'; Before you can output data, it must be queued in the engine using putdata. putdata(ao,[data data]) start(ao) See Also putsample | timeseries | tscollection | MaxSamplesQueued | OutputRange | RepeatOutput | SamplesAvailable | SamplesOutput

| Timeout | UnitsRange

putsample

Purpose	Immediately output one analog output sample		
Syntax	<pre>putsample(obj,data)</pre>		
		annot use the legacy interface on 64–bit MATLAB. See sed Interface" to acquire and generate data.	
Arguments	obj	An analog output object.	
	data	The data to be queued in the engine.	
Description		oj,data) immediately outputs the row vector data, which ne sample for each channel contained by obj.	
Tips	Using putsample is a good way to test your analog output configuration. Additionally:		
	• putsample does not store samples in the data acquisition engine.		
	• putsample can be executed at any time after channels have been added to obj.		
	• putsample is not supported for sound cards and Dynamic Signal Acquisition and Generation (DSA) cards.		
	you access N	to the "Hardware Limitations by Vendor" section before lational Instruments devices with the NI-DAQmx adaptor sly from multiple applications.	
Examples		nalog output object ao for a National Instruments board hardware channels to it.	

ao = analogoutput('nidaq','Dev1'); ch = addchannel(ao,0:1); To call putsample for ao: putsample(ao,[1 1]) See Also putdata

putvalue

Purpose	Write values to digital output lines		
Syntax	putvalue(obj,data) putvalue(obj.Line(index),data)		
		use the legacy interface on 64–bit MATLAB. See terface" to acquire and generate data.	
Arguments	obj	A digital I/O object.	
	obj.Line(index) One or more lines contained by obj.	
	data	A decimal value or binary vector.	
Description	putvalue(obj,data) writes data to the hardware lines contained by the digital I/O object obj.		
	putvalue(obj.Lin specified by obj.l	e(index),data) writes data to the hardware lines _ine(index).	
Tips	More About W	riting Values to Lines	
	binary vector (c (LSB) in the fir	or data as either a decimal value or a binary vector. A per <i>binvec</i>) is constructed with the least significant bit est column and the most significant bit (MSB) in the per example, the decimal number 23 is written as the 1 1 1 0 1].	
	-	lines from a port-configurable device, then all lines to even if they are not contained by the device object.	
	• An error will be	e returned if data is written to an input line.	
	• An error is retu	rned if you attempt to write a negative value.	
		ue is written to a digital I/O object and the value is too resented by the hardware, then an error is returned.	

Note Refer to the "Hardware Limitations by Vendor" section before you access National Instruments devices with the NI-DAQmx adaptor simultaneously from multiple applications.

Examples Create the digital I/O object dio and add four output lines to it.

dio = digitalio('nidaq','Dev1'); lines = addline(dio,0:3,'out');

Write the value 8 as a decimal value and as a binary vector.

putvalue(dio,8)
putvalue(dio,[0 0 0 1])

save

Purpose	Save device object	s to MAT-file	
Syntax	save file save file obj1 obj2		
		use the legacy interface on 64–bit MATLAB. See terface" to acquire and generate data.	
Arguments	file	The MAT-file name.	
	obj1 obj2	One or more device objects or an array of device objects.	
Description	save file saves all the MATLAB variables to the MAT-file file. If an extension is not specified for file, then a .MAT extension is used.		
	save file obj1 ob	j2 saves the specified device objects to file.	
Tips	Saving device obje	cts follows these rules:	
	shown above. W	ve in the functional form as well as the command form When using the functional form, you must specify the evice objects as strings.	
	MAT-file. You c with the getdat using a separate	ated with a device object are not stored in the can bring these samples into the MATLAB workspace ta function, and then save them to the MAT-file e variable name. You can also log samples to disk by LoggingMode property to Disk or Disk&Memory.	
	upon loading. F	only properties are restored to their default values or example, the EventLog property is restored to an Use the propinfo function to determine if a property	

• Values for the BufferingConfig property (if the BufferingMode property is set to Auto) and the MaxSamplesQueued property might not be restored because both these property values are based on available memory.

If you use the help command to display the help for save, then you must supply this pathname:

help daq/private/save

See Also getdata | load | propinfo

Purpose	Configure or display device object properties		
Syntax	<pre>set(obj) props = set(obj) set(obj,'PropertyName') props = set(obj,'PropertyName') set(obj,'PropertyName',PropertyValue,) set(obj,PN,PV) set(obj,S)</pre>		

Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.

Arguments	obj	A device object, array of device objects, channels, or lines.
	'PropertyName'	A property name.
	PropertyValue	A property value.
	PN	A cell array of property names.
	PV	A cell array of property values.
	S	A structure whose field names are device object, channel, or line properties.
	props	A structure array whose field names are the property names for obj, or a cell array of possible values.
Description		all configurable properties for obj. If a property has a le string values, then these values are also displayed.
	• • • •	returns all configurable properties to props. props is with fields given by the property names, and possible

	property values contained in cell arrays. if the property does not have a finite set of possible values, then the cell array is empty.
	<pre>set(obj,'PropertyName') displays the valid values for the property specified by PropertyName. PropertyName must have a finite set of possible values.</pre>
	<pre>props = set(obj, 'PropertyName') returns the valid values for PropertyName to props. props is a cell array of possible values or an empty cell array if the property does not have a finite set of possible values.</pre>
	<pre>set(obj, 'PropertyName', PropertyValue,) sets multiple property values with a single statement. Note that you can use structures, property name/property value string pairs, and property name/property value cell array pairs in the same call to set.</pre>
	set(obj,PN,PV) sets the properties specified in the cell array of stringsPN to the corresponding values in the cell array PV. PN must be a vector.PV can be m-by-n where m is equal to the specified number of device objects, channels, or lines and n is equal to the length of PN.
	<pre>set(obj,S) where S is a structure whose field names are device object properties, sets the properties named in each field name with the values contained in the structure.</pre>
Tips	If you use the help command to display the help for set, then you must supply the pathname shown below.
	help daq/daqdevice/set
Examples	Create the analog input object ai for a sound card and configure it to operate in stereo mode.
	ai = analoginput('winsound'); addchannel(ai,1:2);
	To display all of ai's configurable properties and their valid values:
	set(ai)

To set the value for the SampleRate property to 10000: set(ai, 'SampleRate', 10000) The following two commands set the value for the SampleRate and InputType properties using one call to set. set(ai, 'SampleRate', 10000, 'TriggerType', 'Manual') set(ai, {'SampleRate', 'TriggerType'}, {10000, 'Manual'}) You can also set different channel property values for multiple channels. ch = ai.Channel(1:2); set(ch, {'UnitsRange', 'ChannelName'}, {[-1 1] 'Name1'; [-2 2] 'Name2'}) See Also get | setverify

Purpose	Configure and return specified property				
Syntax	<pre>/ntax Actual = setverify(obj,'PropertyName',PropertyValue) Actual = setverify(obj.Channel(index),'PropertyName',PropertyValue Actual = setverify(obj.Line(index),'PropertyName',PropertyValue</pre>				
		e legacy interface on 64–bit MATLAB. See " to acquire and generate data.			
A					
Arguments	obj	A device object or array of device objects.			
	'PropertyName'	A property name.			
	PropertyValue	A property value.			
	obj.Channel(index)	One or more channels contained by obj.			
	obj.Line(index)	One or more lines contained by obj.			
	Actual	The actual value for the specified property.			
Description		cual = setverify(obj,' <i>PropertyName</i> ',PropertyValue) sets opertyName to PropertyValue for obj, and returns the actual operty value to Actual.			
Actual = setverify(obj.Channel(index),' <i>PropertyName</i> ',PropertyValue) <i>PropertyName</i> to PropertyValue for the channels specified by ind and returns the actual property value to Actual.					
	Actual = setverify(obj.Line(index),' <i>PropertyName</i> ',PropertyValue) sets <i>PropertyName</i> to PropertyValue for the lines specified by index, and returns the actual property value to Actual.				

Tips	setverify is equivalent to the commands
	set(obj,'PropertyName',PropertyValue) Actual = get(obj,'PropertyName')
	Using setverify is not required for setting property values, but it does provide a convenient way to verify the actual property value set by the data acquisition engine.
	setverify is particularly useful when setting the SampleRate, InputRange, and OutputRange properties because these properties can only be set to specific values accepted by the hardware. You can use the propinfo function to obtain information about the valid values for these properties.
	If a property value is specified but does not match a valid value, then
	• If the specified value is within the range of supported values,
	 For the SampleRate and InputRange properties, the value is automatically rounded up to the next highest supported value.
	 For all other properties, the value is automatically selected to be the nearest supported value.
	• If the value is not within the range of supported values, an error is returned and the current property value remains unchanged.
Examples	Create the analog input object ai for a National Instruments AT-MIO-16DE-10 board, add eight hardware channels to it, and set the sample rate to 10,000 Hz using setverify.
	ai = analoginput('nidaq','Dev1'); ch = addchannel(ai,0:7); ActualRate = setverify(ai,'SampleRate',10000);
	Suppose you use setverify to set the input range for all channels contained by ai to -8 to 8 volts.
	ActualInputRange = setverify(ai.Channel,'InputRange',[-8 8]);

The InputRange value was actually rounded up to -10 to 10 volts.

```
ActualInputRange{1}
ans =
-10 10
See Also get | propinfo | set | InputRange | OutputRange | SampleRate
```

showdaqevents

Purpose	Analog input	Analog input and output event log information			
Syntax	<pre>showdaqevents(obj) showdaqevents(obj,index) showdaqevents(struct) showdaqevents(struct,index) out = showdaqevents()</pre>				
		nnot use the legacy interface on 64–bit MATLAB. See ed Interface" to acquire and generate data.			
Arguments	obj index	An analog input or analog output object. The event index.			
	struct	An event structure.			
	out	A one column cell array of event information.			
Description	showdaqevents	s(obj) displays a summary of the event log for obj.			
	showdaqevents by index for c	s(obj,index) displays a summary of the events specified obj.			
	showdaqevents(struct) displays a summary of the events stored in the structure struct.				
	showdaqevents(struct,index) displays a summary of the events specified by index stored in the structure struct.				
	column cell ar	qevents() outputs the event information to a one cray out. Each element of out is a string that contains the ction associated with that index value.			

You can pass a structure of event information to showdaqevents. This structure can be obtained from the getdata function, the daqread function, or the EventLog property.

As shown below, you can also display event information via the Workspace browser by right-clicking a device object and selecting **Explore > Show DAQ Events** from the context menu.

Access context (pop-up) menus by right-clicking a device object.

Examples Create the analog input object ai for a sound card, add two channels, and configure ai to execute three triggers.

```
ai = analoginput('winsound');
ch = addchannel(ai,1:2);
set(ai,'TriggerRepeat',2)
```

Start ai and display the trigger event information with showdaqevents.

```
start(ai)
showdaqevents(ai,2:4)
```

Tips

2	Trigger#1	(17:07:06,	0)	Channel:	N/A
3	Trigger#2	(17:07:07,	8000)	Channel:	N/A
4	Trigger#3	(17:07:08,	16000)	Channel:	N/A

showdaqevents

See Also daqread | getdata | EventLog

Purpose	Size of device object, channel group, or line group
Syntax (1997)	<pre>d = size(obj) [m1,m2,m3,,mn] = size(obj) m = size(obj,dim) d = size(obj.Channel) [m1,m2,m3,,mn] = size(obj.Channel) m = size(obj.Channel,dim) d = size(obj.Line) [m1,m2,m3,,mn] = size(obj.Line) m = size(obj.Line,dim)</pre>

Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.

Arguments	obj	A device object or array of device objects.
	dim	The dimension.
	obj.Channel	The channels contained by obj.
	obj.Line	The lines contained by obj.
	d	A two-element row vector containing the number of rows and columns in obj.
	m1,m2,m3,,mn	Each dimension of obj is captured in a separate variable.
	m	The length of the dimension specified by dim.
Description	<pre>containing the number [m1,m2,m3,,mn] = s</pre>	the two-element row vector d = [m,n] r of rows and columns in obj. size(obj) returns the length of the first n eparate output variables. For example, [m,n] =

	$\verb+size(obj)$ returns the number of rows to m and the number of columns to n.
	<pre>m = size(obj,dim) returns the length of the dimension specified by the scalar dim. For example, size(obj,1) returns the number of rows.</pre>
	<pre>d = size(obj.Channel) returns the two-element row vector d = [m,n] containing the number of rows and columns in the channel group obj.Channel.</pre>
	<pre>[m1,m2,m3,,mn] = size(obj.Channel) returns the length of the first n dimensions of the channel group obj.Channel to separate output variables. For example, [m,n] = size(obj.Channel) returns the number of rows to m and the number of columns to n.</pre>
	<pre>m = size(obj.Channel,dim) returns the length of the dimension specified by the scalar dim. For example, size(obj.Channel,1) returns the number of rows.</pre>
	<pre>d = size(obj.Line) returns the two-element row vector d = [m,n] containing the number of rows and columns in the line group obj.Line.</pre>
	<pre>[m1,m2,m3,,mn] = size(obj.Line) returns the length of the first n dimensions of the line group obj.Line to separate output variables. For example, [m,n] = size(obj.Line) returns the number of rows to m and the number of columns to n.</pre>
	<pre>m = size(obj.Line,dim) returns the length of the dimension specified by the scalar dim. For example, size(obj.Line,1) returns the number of rows.</pre>
Examples	Create the analog input object ai for a National Instruments board and add eight channels to it.
	ai = analoginput('nidaq','Dev1'); ch = addchannel(ai,0:7);
	To find the size of the device object:
	size(ai) ans =

1 1

1

To find the size of the channel group:

```
size(ch)
ans =
8
```

length

See Also

softscope

Purpose	Open data acquisition oscilloscope					
Syntax	<pre>softscope softscope(obj) softscope('fname.si')</pre>					
	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.					
Arguments	obj	An analog input object.				
	fname.si	Name of the file containing Oscilloscope settings.				
Description	(GUI), which all with the Oscille	ns the Hardware Configuration graphical user interface llows you to configure the hardware device to be used oscope. The Oscilloscope opens when you click the OK least one hardware channel is selected.				
	<pre>softscope(obj) opens the Oscilloscope configured to display the data acquired from the analog input object, obj. obj must contain at least one hardware channel.</pre>					
	<pre>softscope('fname.si') pens the Oscilloscope using the settings saved in the softscope file specified by fname. fname is generated from the Oscilloscope's File > Save or File > Save As menu item.</pre>					
Tips	The Oscilloscor	be is a graphical user interface (GUI) that allows you to				
	• Stream acquired data into a display.					
	• Scale displayed data, and configure triggers and measurements.					
 Configure analog input hardware settings. 						
	• Export meas	surements and acquired data.				
	To support thes which are descr	se tasks, the Oscilloscope includes several helper GUIs, ribed below.				

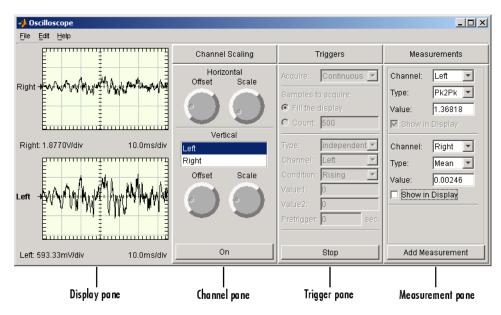
Hardware Configuration

The Hardware Configuration GUI allows you to add channels from a particular hardware device to the Oscilloscope GUI. You can configure the device's sample rate and input type, as well as the input range for each added channel. The GUI shown below is configured to add both sound card channels using the default sample rate.

📣 Hardware Config	ura	tion				<u>_ </u>
Adaptor:	wi	nsound				
ID:	0		-			
Sample Rate (Hz):	80	00				
Input Type:	AC	-Couple	d			T
Select the channel	s to	add:		Select All		Unselect All
HW Chanr	nel	Name		Description		Input Range
✓ 1		Left	Hardware	channel 1		[-1 1]
2		Right	Hardware	channel 2		[-1 1]
				ок	Close	e Help

Oscilloscope

The Oscilloscope GUI consists of these panes:


- **Display** pane The display pane contains the hardware channel data (a trace) and the measurements, if defined. The display area also contains labels for each channel's horizontal and vertical units, and indicators for
 - Each trace
 - The trigger level (if defined)
 - The location of the start of the trigger (used for pretriggers)
- **Channel** pane The channel pane lists the hardware channels, math channels, and reference channels that are currently being viewed in a display. The Channel Panel also contains knobs for configuring

softscope

- The display's horizontal offset and horizontal scale
- The selected channel's vertical offset and vertical scale
- **Trigger** pane The trigger pane allows you to define how data acquisition is initiated. There are three trigger types:
 - One-shot Acquire the specified number of samples once.
 - Continuous Continuously acquire the specified number of samples.
 - Sequence Continuously acquire the specified number of samples, and use the dependent trigger type each time.

For each trigger type, the Oscilloscope begins to acquire data after you press the **Trigger** button.

- **Measurement** pane The measurement pane lists all measurements that are currently being taken. When defining a measurement, you must specify
 - The hardware, math, or reference channel
 - The measurement type
 - Whether the measurement result is drawn as a cursor in the display

The Oscilloscope GUI shown below is configured to display the sound card channels in separate displays.

Channel Exporter

The Channel Exporter allows you to export the data associated with a hardware channel, a math channel, or a reference channel. You can export the channel data to one of four destinations:

- The MATLAB workspace as an array
- The MATLAB workspace as a structure
- A MATLAB figure window
- A MAT-file

All channels added to the oscilloscope are listed in the GUI.

📣 Ch	🔸 Channel Exporter 🔀						
Data	Data destination: Workspace (array)						
Sam	ples to export:	Number in d	isplay				
		C Count 500					
Sele	ct the channel	s to export:					
	Туре	Name	Data Source	Variable Name			
Π	lardware	Left	Hardware ch	c0			
Π	lardware	Right	Hardware ch	c1			
,	<u>E</u> xport Close <u>H</u> elp						

Measurement Exporter

The Measurement Exporter allows you to export the data associated with a measurement. You can export the measurement to one of three destinations:

- The MATLAB workspace
- A MATLAB figure window
- A MAT-file

The number of measurements exported depends on the BufferSize property value. By default, BufferSize is 1 indicating that the last measurement value calculated is available to export.

-	Measurement Exporter							
	Data destination: Workspace							
	Select	t the measurements	to export:					
		Channel	Туре	Variable Name				
		Left	Pk2Pk	m0				
		Right	Mean	m1				
			<u>Export</u> C	lose <u>H</u> elp				

Scope Editor

The Scope Editor consists of two panes:

• **Scope** — Add and remove displays, the channel pane, the measurement pane, and the trigger pane. Note that you can define as many displays as you want, but there can only be only one channel pane, measurement pane, and trigger pane in the Oscilloscope at a time.

• Scope Properties — Configure properties for the displays, the channel pane, the measurement pane, and the trigger pane.

📣 Scope Edito	r			×
Scope Scop	e Properties			
-Define a new	diaplay			
	/ uispiay			
Label:				
				Add
Defined sco	pe componer	ts		
	-	Гуре	Lat	oel 🛛
	Channel		Channel Scaling	
	Measurem	ent	Measurements	
	Trigger		Triggers	
	Display		display1	
	Display		display2	
				Delete
	ОК	Cancel	Apply	Help

Channel Editor

The Channel Editor consists of three panes:

- **Channel** Add or delete math channels and reference channels, and select which defined channels are available to the Oscilloscope.
- **Channel Properties** Configure properties for defined hardware channels, math channels, and reference channels.

• **Channel Display** — Select the Oscilloscope display for each defined channel, or choose to not display a channel.

📣 Channel Editor 🔀						
Channel Channel Properties Channel Display						
Define a new	/ channel					
Type:	Math				•	
Name:						
Expression:						
Display:	display1				•	
Add						
Defined char	nnels					
Туре	Name	Data Sou	irce	D	isplay	
🔽 Hardwar		Hardware Cha		displa		
Hardwar	re CH2	Hardware Cha	nnel2	displa	<u>y1</u>	
Delete						
	ОK	Cancel	<u>A</u> pp	ly	<u>H</u> elp	

Measurement Editor

The Measurement Editor consists of three panes:

• **Measurement** — Add or delete measurements, and select which defined measurements are available to the Oscilloscope.

- **Measurement Properties** Configure properties for the defined measurements.
- **Measurement Type** Add or delete measurement types, and select which defined measurement types are available to the Oscilloscope.

📣 Measuri	ement Editor	×				
Measurement Measurement Properties Measurement Type						
_Define a	new measurement	· · · ·				
Channel:	CH1					
Type:	None	T				
		Add				
_ ⊢Defined	measurements					
	Channel	Туре				
		Pk2Pk				
	12	Mean				
Delete						
	OK Cance	I <u>A</u> pply <u>H</u> elp				

Purpose	Start device object			
Syntax	<pre>start(obj)</pre>			
	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.			
Arguments	obj	A device object or an array of device objects.		
Description	<pre>start(obj) initiates the execution of the device object obj.</pre>			
Tips	 When start is issued for an analog input or analog output object, The callback function specified for StartFcn is executed. The Running property is set to On. The start event is recorded in the EventLog property. Data existing in the engine is flushed. Although an analog input or analog output object might be executing, data logging or sending is not necessarily initiated. Data logging or sending requires a trigger event to occur, and depends on the TriggerType property value. For any device object, you can specify start as the value for a callback property. ai.StopFcn = @start; 			
		bically execute a digital I/O object to periodically update ts state. Refer to the diopanel example to see this		

If you want to synchronize the input and output of data, or you require more control over when your hardware starts, you should use the ManualTriggerHwOn property.

See Also stop | trigger | EventLog | ManualTriggerHwOn | Running | Sending | TriggerType

Purpose	Stop device object					
Syntax	<pre>stop(obj)</pre>					
	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.					
Arguments	obj A device object or an array of device objects.					
Description	stop(obj) terminates the execution of the device object obj.					
Tips	An analog input object automatically stops when the requested samples are acquired or data is missed. An analog output object automatically stops when the queued data is output. These two device objects can also stop executing under one of these conditions:					
	• The Timeout property value is reached.					
	• A run-time error occurs.					
	For analog input objects, stop must be used when the TriggerRepeat property or SamplesPerTrigger property is set to inf. For analog output objects, stop must be used when the RepeatOutput property is set to inf. When stop is issued for either of these device objects,					
	• The Running property is set to Off.					
	• The Logging property or Sending property is set to Off.					
	• The callback function specified for StopFcn is executed.					
	• The stop event is recorded in the EventLog property.					
	• All pending callbacks for this object are discarded.					
	For any device object, you can specify stop as the value for a callback property.					

ao.TimerFcn = @stop;

Note Issuing stop is the only way to stop an executing digital I/O object. You typically execute a digital I/O object to periodically update and display its state. Refer to the diopanel example.

See Also start | trigger | EventLog | Logging | RepeatOutput | Running | SamplesPerTrigger | Sending | Timeout | TriggerRepeat

Purpose	Manually execute trigger for analog input or output object				
Syntax	trigger(obj)				
	Note You cannot use the legacy interface on 64–bit MATLAB. See				
	"Session-Based Interface" to acquire and generate data.				
Arguments	obj An analog input or analog output object or an array of these device objects.				
Description	trigger(obj) manually executes a trigger.				
Tips	After trigger is issued,				
	 The absolute time of the trigger event is recorded by the InitialTriggerTime property. 				
	• The Logging property or Sending property is set to On.				
	• The callback function specified by TriggerFcn is executed.				
	• The trigger event is recorded in the EventLog property.				
	You can issue trigger only if TriggerType is set to Manual, Running is On, and Logging is Off.				
See Also	start stop InitialTriggerTime Logging Running Sending TriggerFcn TriggerType				

wait

Purpose	Wait until analog input or output device object stops running			
Syntax	wait(obj,waittime)			
	Note You cannot use the legacy interface on 64–bit MATLAB. See "Session-Based Interface" to acquire and generate data.			
Argumonto				
Arguments	obj	A device object or an array of device objects.		
	waittime	The maximum time to wait for obj to stop running.		
Description	wait(obj,waittime) blocks the MATLAB Command Window, and waits for obj to stop running. You specify the maximum waiting time, in seconds, with waittime. waittime overrides the value specified for the Timeout property. If obj is an array of device objects, then wait might wait up to the specified time for each device object in the array.			
	wait is particularly useful if you want to guarantee that the specified data is acquired before another task is performed.			
Tips	If obj is not running when wait is issued, or if an error occurs while obj is running, then wait immediately relinquishes control of the Command Window.			
	When obj stops running, its Running property is automatically set to Off. obj can stop running under one of these conditions:			
	• The requested number of samples is acquired (analog input) or sent out (analog output).			
	• The stop function is issued on that object.			
	• A run-time error occurs.			
	 The Timeout property value is reached (waittime supersedes this value). 			

All callbacks, including the StopFcn, are executed before wait returns.

Examples Create the analog input object ai for a National Instruments board, add eight channels to it, and configure a 25-second acquisition.

```
ai = analoginput('nidaq','Dev1');
ch = addchannel(ai,0:7);
ai.SampleRate = 2000;
ai.TriggerRepeat = 4;
ai.SamplesPerTrigger = 10000;
```

You can use wait to block the MATLAB Command Window until all the requested data is acquired. Because the expected acquisition time is 25 seconds, the waittime argument is 26. If the acquisition does not complete within this time, then a timeout occurs.

start(ai)
wait(ai,26)

See Also EventLog | Running | StopFcn | Timeout

daq.createSession

Purpose	Create data acquisition session for specific vendor hardware			
Syntax	<pre>session=daq.createSession('vendor')</pre>			
Description	<pre>session=daq.createSession('vendor') creates a session object that you can configure to perform operations using a CompactDAQ device.</pre>			
Input Arguments	vendor - Vendor name character string			
	Vendor name for the device you want to create a session for, specified as a string. The session-based interface currently supports National Instruments devices only, represented with the abbreviation ni.			
Output Arguments	session - Session object character string			
	Session object created using daq.createSession, specified as a string variable. Use the data acquisition session for acquisition and generation operations. Create one session per vendor and use that vendor session to perform all data acquisition operations.			
Properties	Session acquisition and generation properties:			
	Channels	Array of channel objects associated with session object		
	Connections	Array of connections in session		
	DurationInSeconds	Specify duration of acquisition		
	IsContinuous	Specify if operation continues until manually stopped		
	IsDone	Indicate if operation is complete		
	IsLogging Indicate if hardware is ac or generating data			
	IsNotifyWhenDataAvailableExcee @sAuto l if is set automatically			

${\tt IsNotifyWhenScansQueuedBelowAu} {\tt Control} \ {\tt if} \ {\tt is set automatically} \\$
${\tt Notify} {\tt WhenDataAvailableExceeds} Control firing of {\tt DataAvailable}$

	event
NotifyWhenScansQueuedBelow	Control firing of DataRequired event
NumberOfScans	Number of scans for operation when starting
Range	Specify channel measurement range
Rate	Rate of operation in scans per second
RateLimit	Limit of rate of operation based on hardware configuration
ScansAcquired	Number of scans acquired during operation
ScansOutputByHardware	Indicate number of scans output by hardware
ScansQueued	Indicate number of scans queued for output
Vendor	Vendor information associated with session object

Examples Create a session object s:

s=daq.createSession ('ni')

s =

Data acquisition session using National Instruments hardware: Will run for 1 second (1000 scans) at 1000 scans/second. No channels have been added.

See Also	daq.Session addAnalogInputChannel addAnalogOutputChannel addDigitalChannel addAudioInputChannel addAudioOutputChannel addCounterInputChannel addCounterOutputChannel daq.getDevices daq.getVendors

How To • "Session-Based Interface"

Purpose	Display available National Instruments devices			
Syntax	daq.getDevices device=daq.getDevices			
Description	daq.getDevices lists devices available to your system. Use device=daq.getDevices stores this list in the variable <i>device</i> .			
Tips	Devices not supported by the toolbox are denoted with an *. For a complete list of supported CompactDAQ devices, see the Supported Hardware page in the Data Acquisition Toolbox area of the MathWorks Web site.			
Output Arguments	device - Device list handle character string Device list handle variable that you want to store a list of devices available to your system, specified as a string.			
Examples	Get a list of devices Get a list of all devices available to your system and store it in the variable d. d=daq.getDevices			
	d =			
index Vendor Device ID Desc				
	1directsound Audio0DirectSound Primary Sound Capture Driver2directsound Audio1DirectSound Digital Audio (S/PDIF) (High3directsound Audio3DirectSound HP 4120 (2- HP 4120)4nicDAQ1Mod15nicDAQ1Mod26nicDAQ1Mod37nicDAQ2Mod17nicDAQ2Mod18National Instruments99402			

I

8	ni	cDAQ2Mod2	National	Instruments	NI 9205
9	ni	cDAQ2Mod3	National	Instruments	NI 9375
10	ni	Dev1	National	Instruments	USB-6211
11	ni	Dev2	National	Instruments	USB-6218
12	ni	Dev3	National	Instruments	PCI-6255
13	ni	PXI1Slot2	National	Instruments	PXI-4461
14	ni	PXI1Slot3	National	Instruments	PXI-4461

To get detailed information about a module on the chassis, type d(index). For example, to get information about NI 9265, which has the index 13, type:

```
d(13)
ans =
ni: National Instruments NI 9402 (Device ID: 'cDAQ1Mod5')
Counter input subsystem supports:
    Rates from 0.1 to 8000000.0 scans/sec
    4 channels ('ctr0','ctr1','ctr2','ctr3')
    'EdgeCount','PulseWidth','Frequency','Position' measurement types
Counter output subsystem supports:
    Rates from 0.1 to 8000000.0 scans/sec
    4 channels ('ctr0','ctr1','ctr2','ctr3')
    'PulseGeneration' measurement type
```

This module is in slot 5 of the 'cDAQ-9178' chassis with the name 'cDAQ1'.

You can also click on the name of the device in the list. You can now access detailed device information which includes:

- subsystem type
- rate
- number of available channels
- measurement type

See Also daq.Session | daq.getVendors | daq.createSession

How To • "Session-Based Interface"

daq.getVendors

Purpose	Display available vendors
Syntax	daq.getVendors vendor=daq.getVendors
Description	daq.getVendors lists vendors available to your machine and MATLAB. vendor=daq.getVendors stores this list in the variable <i>vendor</i> .
Output Arguments	vendor - Vendor information character string Vendor information available to your system, stored in a variable.
	Data Acquisition Toolbox currently supports
	• National Instruments, including CompactDAQ devices, denoted with the abbreviation 'ni'.
	 Digilent Analog Discovery[™] devices denoted with 'digilent'. To use this device use the Support Package Installer to download necessary drivers. For more information see "Digilent Analog Discovery Devices".
	• DirectSound Windows sound cards. To use devices with DirectSound sound cards use the Support Package Installer to download necessary drivers. For more information see "Multichannel Audio Input and Output".
Examples	Get a list of vendors
	Get a list of all vendors available to your machine and MATLAB and store it in the variable v.
	v=daq.getVendors
	v =
	Number of vendors: 3

	index	ID	Operational	Comment
	1 2 3	digilent ni directsound	true true true	Digilent Inc. National Instruments DirectSound
	Prope	rties, Metho	ds, Events	
			-	endors may be available as downloadable s aller to install additional vendors.
See Also	daq.S	ession daq.	getDevices	daq.createSession
How To	• "Se	ssion-Based In	terface"	

addAnalogInputChannel

Purpose	Add analog input channel
Syntax	addAnalogInputChannel(s,deviceID,channelID,measurementType) ch=addAnalogInputChannel(s,deviceID,channelID,measurementType) [ch,idx]=addAnalogInputChannel(s,deviceID,channelID,measurementType)
Description	addAnalogInputChannel(s,deviceID,channelID,measurementType) adds a channel on the device represented by deviceID, with the specified channelID, and channel measurement type, represented by measurementType, to the session S. Measurement types are vendor specific.
	ch=addAnalogInputChannel(s,deviceID,channelID,measurementType) creates and displays the object ch.
	[ch,idx]=addAnalogInputChannel(s,deviceID,channelID,measurementType) creates and displays the object ch, representing the channel that was added and the index, idx, which is an index into the array of the session object's Channels property.
Tips	• Use daq.createSession to create a session object before you use this method.
	• To use counter channels, see addCounterInputChannel.
Input Arguments	s - Session object character string
	Session object created using daq.createSession specified as a string variable. Use the data acquisition session for acquisition and generation operations. Create one session per vendor and use that vendor session to perform all data acquisition operations.
	deviceID - Device ID character string

Device ID as defined by the device vendor specified as a character string. Obtain the device ID by calling daq.getDevices. The channel specified for this device is created for the session object.

channelID - Channel ID

numeric value

Channel ID, or the physical location of the channel on the device, added to the session, specified as numeric value. You can also add a range of channels. The index for this channel displayed in the session indicates this channels position in the session. If you add a channel with channel ID 1 as the first channel in a session, the session index is 1.

measurementType - Channel measurement type

character string

Channel measurement type specified as a string. measurementType represents a vendor-defined measurement type. Measurement types include:

- 'Voltage'
- 'Thermocouple'
- 'Current'
- 'Accelerometer'
- 'RTD'
- 'Bridge'
- 'Microphone'
- 'IEPE'
- 'Audio'

Output

Arguments

ch - Analog input channel object

1xn array

Analog input channel that you add, returned as an object containing a 1xn array of vendor specific channel specific information. Use this channel object to access device and channel properties.

idx - Channel index

numeric

Channel index returned as a numeric value. Through the index you can access the array of the session object's Channels property.

Properties	ADCTimingMode	Set channel timing mode
	BridgeMode	Specify analog input device bridge mode
	Coupling	Specify input coupling mode
	Device	Channel device information
	ExcitationCurrent	Voltage of external source of excitation
	ExcitationSource	External source of excitation
	ExcitationVoltage	Voltage of excitation source
	ExternalTriggerTimeout	Indicate if external trigger timed out
	ID	ID of channel in session
	MaxSoundPressureLevel	Sound pressure level for microphone channels
	MeasurementType	Channel measurement type
	Name	Specify descriptive name for the channel
	NominalBridgeResistance	Resistance of sensor

R0	Specify resistance value
Range	Specify channel measurement range
RTDConfiguration	Specify wiring configuration of RTD device
RTDType	Specify sensor sensitivity
ScansAcquired	Number of scans acquired during operation
Sensitivity	Sensitivity of an analog channel
ShuntLocation	Indicate location of channel's shunt resistor
ShuntResistance	Resistance value of channel's shunt resistor
TerminalConfig	Specify terminal configuration
ThermocoupleType	Select thermocouple type
Units	Specify unit of RTD measurement

Examples Add an analog input current channel

```
s=daq.createSession ('ni')
addAnalogInputChannel(s,'cDAQ1Mod3','ai0', 'Current');
```

Create analog input channel and index objects

```
s=daq.createSession ('ni')
[ch, idx] = addAnalogInputChannel(s,'cDAQ2Mod6', 'ai0', 'Thermocouple')
```

Add a range of analog input channels

```
s=daq.createSession ('ni')
ch=addAnalogInputChannel(s,'cDAQ1Mod1',[0 2 4], 'Voltage');
```

addAnalogInputChannel

See Also	daq.createSession startBackground startForeground
	<pre>inputSingleScan addAnalogOutputChannel removeChannel</pre>

How To • "Session-Based Interface"

Purpose	Add analog output channel
---------	---------------------------

Syntax addAnalogOutputChannel(s, channelID, measurementType) ch=addAnalogOutputChannel(s,channelID,measurementType) [ch, idx] = addAnalogOutputChannel(s, channelID, measurementType)

Description addAnalogOutputChannel(s, channelID, measurementType) adds an analog output channel on the device represented by deviceID, with the specified channelID, and channel measurement type, defined by measurementType, on the session object, s. Measurement types are vendor specific.

> ch=addAnalogOutputChannel(s,channelID,measurementType) creates and displays the object ch, representing the channel that was added.

[ch,idx]=addAnalogOutputChannel(s,channelID,measurementType) creates and displays the object ch, representing the channel that was added and the object idx, representing the index into the array of the session object's Channels property.

Tips

- Use dag.createSession to create a session object before you use this method.
- To use counter channels, see addCounterInputChannel.

Input s - Session object **Arguments** character string

Session object created using daq.createSession specified as a string variable. Use the data acquisition session for acquisition and generation operations. Create one session per vendor and use that vendor session to perform all data acquisition operations.

deviceName - Device ID

character string

Device ID as defined by the device vendor specified as a character string. Obtain the device ID by calling daq.getDevices. The channel specified for this device is created for the session object.

channelID - Channel ID

numeric value

Channel ID, or the physical location of the channel on the device, added to the session, specified as numeric value. You can also add a range of channels. The index for this channel displayed in the session indicates this channels position in the session. If you add a channel with channel ID 1 as the first channel in a session, the session index is 1.

measurementType - Channel measurement type

character string

Channel measurement type specified as a string. measurementType represents a vendor-defined measurement type. Measurement types include:

- 'Voltage'
- 'Current'

Output Arguments

ch - Analog output channel object

1xn array

Analog output channel that you add, returned as an object containing a 1xn array of vendor specific channel specific information. Use this channel object to access device and channel properties.

idx - Channel index

numeric

Channel index returned as a numeric value. Through the index you can access the array of the session object's Channels property.

Properties	Device	Channel device information
	ExcitationCurrent	Voltage of external source of excitation
	ExcitationSource	External source of excitation
	ExternalTriggerTimeout	Indicate if external trigger timed out
	ID	ID of channel in session
	MaxSoundPressureLevel	Sound pressure level for microphone channels
	MeasurementType	Channel measurement type
	Name	Specify descriptive name for the channel
	Range	Specify channel measurement range
	ScansOutputByHardware	Indicate number of scans output by hardware
	ScansQueued	Indicate number of scans queued for output
	Sensitivity	Sensitivity of an analog channel
	TerminalConfig	Specify terminal configuration

Examples Add an analog output voltage channel

s = daq.createSession ('ni')
addAnalogOutputChannel(s,'cDAQ1Mod2','ao0', 'Voltage');

Create analog output channel and index objects

```
s = daq.createSession ('ni')
[ch,idx]=addAnalogOutputChannel(s,'cDAQ1Mod2','ao0', 'Voltage');
```

Add a range of analog output channels

```
s = daq.createSession ('ni')
ch=addAnalogOutputChannel(s,'cDAQ1Mod8',0:3, 'Current');
```

See Also daq.createSession | startBackground | startForeground | outputSingleScan | addAnalogInputChannel | removeChannel

```
How To • "Session-Based Interface"
```

Purpose	Remove channel from session object
Syntax	<pre>removeChannel(s,idx);</pre>
Description	<pre>removeChannel(s,idx); removes the channel specified by idx from the session object s.</pre>
Input Arguments	s - Session object character string
	Session object created using daq.createSession specified as a string variable. Use the data acquisition session for acquisition and generation operations. Create one session per vendor and use that vendor session to perform all data acquisition operations.
	idx - Index of channel numeric
	Channel index, specified as a numeric value. Use the index of the channel that you wan to remove from the session.
Examples	Remove Channels From a Session
	Start with a session s , with two analog input and two analog output voltage channels and display channel information.
	S
	S =
	Data acquisition session using National Instruments hardware: No data queued. Will run at 1000 scans/second. Operation starts immediately. Number of channels: 4 index Type Device Channel InputType Range Name
	1 ai cDAQ1Mod4 ai0 SingleEnd -10 to +10 Volts 2 ai cDAQ1Mod4 ai1 SingleEnd -10 to +10 Volts

3	ao	cDAQ1Mod2	ao0	n/a	-10	to	+10	Volts
4	ao	cDAQ1Mod2	ao1	n/a	-10	to	+10	Volts

Remove channel 'ai0' currently with the index 1 from the session:

```
removeChannel(s,1)
```

To see how the indexes shift after you remove a channel, type:

S							
s =							
No data All dev:	queue ices s	d. Will ru	un at 100 d using (00 scans/se	ruments hardwar econd. actDAQ chassis		(De
inde	к Туре	Device	Channel	InputType	Range	Name	
1	ai	cDAQ1Mod4	ai1	SingleEnd	-10 to +10 Vol	lts	
2	ao	cDAQ1Mod2	ao0	n/a	-10 to +10 Vol	lts	
3	ao	cDAQ1Mod2	ao1	n/a	-10 to +10 Vol	lts	

Remove the first output channel 'ao0' currently at index 2:

removeChannel(s,2)

The session displays one input and one output channel:

s.Channels

ans =
Number of channels: 2
index Type Device Channel InputType Range Name
....
1 ai cDAQ1Mod4 ai1 SingleEnd -10 to +10 Volts
2 ao cDAQ1Mod2 ao1 n/a -10 to +10 Volts

See Also addAnalogInputChannel | addAnalogOutputChannel | addDigitalChannel | addCounterInputChannel | addCounterOutputChannel | addAudioInputChannel | addAudioOutputChannel

startBackground

Purpose	Start background operations		
Syntax	<pre>startBackground(s);</pre>		
Description	startBackground(s); tarts the operation of the session object, <i>s</i> , without blocking MATLAB command line and other code. To block MATLAB execution, use startForeground.		
	When you use startBackground(s) with analog input channels, the operation uses the DataAvailable event to deliver the acquired data. This event is fired periodically while an acquisition is in progress. For more information, see "Events and Listeners — Concepts".		
	When you add analog output channels to the session, you must call queueOutputData() before calling startBackground().		
	During a continuous generation, the DataRequired event is fired periodically to request additional data to be queued to the session. See DataRequired for more information.		
	By default, the IsContinuous property is set to false and the operation stops automatically. If you have set it to true, use stop to stop background operations explicitly.		
	Use wait to block MATLAB execution until a background operation is complete.		

 -	
I	р

- If your session has analog input channels, you must use a DataAvailable event to receive the acquired data in a background acquisition.
- If your session has analog output channels and is continuous, you can use a DataRequired event to queue additional data during background generations.
- Create an acquisition session and add a channel before you use this method. See daq.createSession for more information.
- Call prepare to reduce the latency associated with startup and to preallocate resources.
- Use an ErrorOccurred event to display errors during an operation.

Input s - Session object Arguments character string

Session object created using daq.createSession specified as a string variable. Use the data acquisition session for acquisition and generation operations. Create one session per vendor and use that vendor session to perform all data acquisition operations.

Examples Acquire Data in the Background

Create a session and adding a listener to access the acquired data using a callback function.

```
s=daq.createSession ('ni');
addAnalogInputChannel(s,'cDAQ1Mod1', 'ai0', 'Voltage');
lh=addlistener(s,'DataAvailable', @plotData);
```

Start the session and perform other MATLAB operations.

```
startBackground(s);
```

Perform other MATLAB operations.

Generate Data Continuously

For a continuous background generation, add a listener event to queue additional data to be output.

```
s=daq.createSession('ni');
addAnalogOutputChannel(s,'cDAQ1Mod2', 0, 'Voltage');
s.IsContinuous = true;
s.Rate=10000;
data=linspace(-1, 1, 5000)';
lh=addlistener(s,'DataRequired', ...
@(src,event) src.queueOutputData(data));
queueOutputData(s,data)
startBackground(s);
```

Perform other MATLAB operations during the generation.

See Also daq.createSession | startForeground | addAnalogInputChannel | addAnalogOutputChannel | addDigitalChannel | addAudioInputChannel | DataAvailable | DataRequired | ErrorOccurred | addlistener

Related Examples

- "Acquire Data in the Background"
- "Generate Signals in the Background"
- "Generate Signals in the Background Continuously"

Purpose	Start foreground operations
Syntax	startForeground(s); data=startForeground(s); [data,timeStamps,triggerTime]=startForeground(s);
Description	<pre>startForeground(s); starts operations of the session object, s, and blocks MATLAB command line and other code until the session operation is complete.</pre>
	data=startForeground(s); returns the data acquired in the output parameter, data.
	[data,timeStamps,triggerTime]=startForeground(s); returns the data acquired, timestamps relative to the time the operation is triggered, and a trigger time indicating the absolute time the operation was triggered.
Input Arguments	s - Session object character string
5	Session object created using daq.createSession specified as a string variable. Use the data acquisition session for acquisition and generation operations. Create one session per vendor and use that vendor session to perform all data acquisition operations.
Output Arguments	data - Value from acquired data numeric array
5	Value from acquired data, returned as a mxn array of doubles. m is the number of scans acquired, and n is the number of input channels in the session.
	timeStamps - Recorded time stamp numeric

Recorded time stamp relative to the time the operation is triggered in an mx1 array where m is the number of scans.

triggerTime - Time stamp of acquired data

numeric

Time stamp of acquired data which is a MATLAB serial date time stamp representing the absolute time when timeStamps = 0.

Examples Acquire Analog Data

Acquire data by creating a session with an analog input channel.

```
s=daq.createSession('ni');
addAnalogInputChannel(s,'cDAQ1Mod1','ai0','Voltage');
```

Start the acquisition and save the acquired data into the variable data:

data=startForeground(s);

Generate Analog Data

Generate a signal by creating a session with an analog output channel.

```
s=daq.createSession('ni');
addAnalogOutputChannel(s,'cDAQ1Mod2','ao0','Voltage')
```

Create and queue an output signal and start the generation:

```
outputSignal=linspace(-1,1,1000)';
queueOutputData(s,outputSignal);
startForeground(s);
```

Acquire Analog Input Data and Time Stamps

```
s=daq.createSession('ni');
addAnalogInputChannel(s,'cDAQ1Mod1','ai0','Voltage');
```

Start the acquisition and save the acquired data in the variable data, the acquisition time stamp in timestamps and the trigger time in triggerTime:

[data,timestamps,triggerTime]=startForeground(s);

See Also	daq.createSession addAnalogInputChannel addAnalogOutputChannel addDigitalChannel startBackground
Related Examples	 "Acquire Data in the Foreground" "Generate Data on a Counter Channel"
Concepts	• "Session-Based Interface and Data Acquisition Toolbox"

addlistener

Purpose	Create event listener
Syntax	lh = addlistener(eventName,@callback) lh = addlistener(eventName, @(src, event) expr)
Description	<pre>lh = addlistener(eventName,@callback) creates a listener for the specified event, eventName, and fires the callback function, callback. lh is the variable in which the listener handle is stored. Create a callback function that executes when the listener detects the specified event. The callback can be any MATLAB function.</pre>
	<pre>lh = addlistener(eventName, @(src, event) expr) creates a listener for the specified event, eventName, and fires an anonymous callback function. The anonymous function uses the specified input arguments and executes the operation specified in the expression expr. Anonymous functions provide a quick means of creating simple functions without storing them to a file. For more information, see Anonymous Functions.</pre>
	Tip You must delete the listener once the operation is complete. delete (1h)
Input Arguments	 eventName - Event name character string Name of the event to listen for, specified as a string. Available events include: DataAvailable DataRequired ErrorOccurred

callback - Callback function name

character string

Name of the function to execute when the specified event occurs, specified as a string.

src - Session object

character string

The session object, where the event occurred, specified as a string.

event - Event object

character string

Specified event object, specified as a string. For more information, see Session Events.

expr - Body of function

Expression that represents the body of the function.

Output Arguments	Ih - Listener event handle character string
	Handle to the event listener returned by addlistener, specified as a string. Delete the listener once the operation completes.
Examples	Add a listener to an acquisition session
	Creating a session and add an analog input channel.
	s = daq.createSession('ni'); addAnalogInputChannel(s,'cDAQ1Mod1', 'aiO', 'Voltage');
	Add a listener for the DataAvailable event:
	<pre>lh = addlistener(s,'DataAvailable', @plotData);</pre>
	Create the plotData callback function and save it as plotData.m:

Acquire data in the background:

startBackground(s);

Wait for the operation to complete and delete the listener:

```
delete (lh)
```

Add a listener using an anonymous function to a signal generation

Create a session and set the IsContinuous property to true.

```
s = daq.createSession('ni');
s.IsContinuous = true;
```

Add two analog output channel and create output data for the two channels.

```
addAnalogOutputChannel(s,'cDAQ1Mod2', 0:1, 'Voltage');
outputData0 = linspace(-1, 1, 1000)';
outputData1 = linspace(-2, 2, 1000)';
```

Queue the output data.

queueOutputData(s,[outputData0 outputData1]);

Add an anonymous listener and generate the signal in the background.

Generate signals in the background.

startBackground(s);

	Perform other MATLAB operations, and then stop the session.
	<pre>stop(s)</pre>
	Delete the listener:
	delete (lh)
See Also	daq.createSession addAnalogInputChannel addAnalogOutputChannel startBackground DataAvailable DataRequired ErrorOccurred

How To • "Working with the Session-Based Interface"

prepare

Purpose	Prepare session for operation
Syntax	prepare(s)
Description Inputs	<pre>prepare(s) configures and allocates hardware resources for the session s and reduces the latency of startBackground and startForeground functions. This function is optional and is automatically called as needed. s - Session object</pre>
	character string Session object created using daq.createSession specified as a string variable. Use the data acquisition session for acquisition and generation operations. Create one session per vendor and use that vendor session to perform all data acquisition operations.
See Also	addAnalogInputChannel addAnalogInputChannel release

Purpose	Block MATLAB until background operation completes
Syntax	wait(s) wait (s,timeout)
Description	<pre>wait(s) blocks MATLAB until the background operation completes. Press Ctrl+C to abort the wait.</pre>
	wait (s,timeout) blocks MATLAB until the operation completes or the specified time-out occurs.
	Tips
	 You cannot call wait if you have set the session's IsContinuous property to true.
	• To terminate the operation, use stop.
Input Arguments	s - Session object character string
	Session object created using daq.createSession specified as a string variable. Use the data acquisition session for acquisition and generation operations. Create one session per vendor and use that vendor session to perform all data acquisition operations.
	timeout - Session timeout value numeric
	Session timeout value, or the maximum time in seconds before the wait throws an error, specified as a number.
Examples	Wait to acquire data
	Create a session and add an analog output channel.

```
s=daq.createSession('ni');
                  addAnalogOutputChannel(s,'cDAQ1Mod2', 'ao0', 'Voltage');
                  Queue some output data.
                  queueOutputData(s,zeros(10000,1));
                  Start the session and issue a wait. This blocks MATLAB for all data is
                  output.
                  startBackground(s);
                  % perform other MATLAB operations.
                  wait(s)
                  Queue more data and wait for up to 15 seconds.
                  queueOutputData(s,zeros(10000,1));
                  startBackground(s);
                  % perform other MATLAB operations.
                  wait(s,15);
See Also
                  startBackground | stop
```

Purpose	Stop background operation
Syntax	<pre>stop(s);</pre>
Description	<pre>stop(s); stops the session and all associated hardware operations in progress. If your operation has acquired data and the DataAvailable event has not yet fired, the stop command will fire the event and deliver the data acquired up to that point.</pre>
Input Arguments	s - Session object character string
-	Session object created using daq.createSession specified as a string variable. Use the data acquisition session for acquisition and generation operations. Create one session per vendor and use that vendor session to perform all data acquisition operations.
See Also	<pre>startBackground startForeground wait daq.Session</pre>

release

Purpose	Release session resources
Syntax	release(s)
Description	release(s) releases all reserved hardware resources.
	When you associate hardware with a session using the Data Acquisition Toolbox, the session reserves exclusive access to the data acquisition hardware.
	Hardware resources associated with a session are automatically released when you delete the session object, or you assign a different value to the variable containing your session object. Optionally, you can use <i>s.release</i> to release reserved hardware resources if you need to use it in another session or to use applications other than MATLAB to access the hardware.
Inputs	s - Session object character string
	Session object created using daq.createSession specified as a string variable. Use the data acquisition session for acquisition and generation operations. Create one session per vendor and use that vendor session to perform all data acquisition operations.
Examples	Release session hardware
	Create a session and add an analog input voltage channel and acquire data in the foreground:
	s1=daq.createSession('ni'); addAnalogInputChannel(s1,AQ3Mod1', 'aiO', 'Voltage'); startForeground(s1)
	Release the session hardware and create another session object with an analog input voltage channel on the same device as the previous session. Acquire in the foreground:
	release(s1s2 = daq.createSession('ni');

```
s2=daq.createSession('ni');
ddAnalogInputChannel(s2,'cDAQ3Mod1','ai2','Voltage');
startForeground(s2);
See Also prepare | startForeground | startBackground | daq.Session
```

inputSingleScan

Purpose	Acquire single scan from all input channels
Syntax	data=inputSingleScan(s); [data,triggerTime]=inputSingleScan(s);
Description	data=inputSingleScan(s); returns an immediately acquired single scan from each input channel in the session as a 1xn array of doubles. The value is stored in data, where n is the number of input channels in the session.
	[data,triggerTime]=inputSingleScan(s); returns an immediately acquired single scan from each input channel in the session as a 1xn array of doubles. The value is stored in data, where n is the number of input channels in the session and the MATLAB serial date time stamp representing the time the data is acquired is returned in triggerTime.
	Tip To acquire more than a single input, use startForeground.
Input Arguments	s - Session object character string
	Session object created using daq.createSession specified as a string variable. Use the data acquisition session for acquisition and generation operations. Create one session per vendor and use that vendor session to perform all data acquisition operations.
Output Arguments	data - Value from acquired data numeric array
C	Value from acquired data, returned as a 1xn array of doubles.
	triggerTime - Time stamp of acquired data numeric

Time stamp of acquired data which is a MATLAB serial date time stamp representing the absolute time when timeStamps = 0.

Examples Acquire Single Analog Input Scan

Acquire a single input from an analog channel.

Create a session and add two analog input channels:

```
s=daq.createSession('ni');
addAnalogInputChannel(s,'cDAQ1Mod1', 1:2, 'Voltage');
```

Input a single scan:

```
data=inputSingleScan(s)
```

data =

-0.1495 0.8643

Acquire Single Digital Input Scan

Acquire a single input from a digital channel and get data and the trigger time of the acquisition.

Create a session and add two digital channels with InputOnly measurement type:

```
s=daq.createSession('ni');
addDigitalChannel(s,'dev1', 'Port0/Line0:1', 'Input0nly');
```

Input a single scan:

```
[data,triggerTime]=inputSingleScan(s)
```

Acquire Single Counter Input Scan

Acquire a single input from a counter channel.

Create a session and add a counter input channel with ${\tt EdgeCount}$ measurement type:

```
s=daq.createSession('ni');
addCounterInputChannel(s,'Dev1',0,'EdgeCount');
```

Input a single edge count:

data=inputSingleScan(s)

See Also startForeground | daq.createSession | addAnalogInputChannel | addCounterInputChannel | addDigitalChannel

Related Examples

- "Acquire Non-Clocked Digital Data"
- "Acquire Counter Input Data"

Purpose	Queue data to be output
Syntax	queueOutputData (s,data)
Description	queueOutputData (s,data) queues data to be output. When using analog output channels, you must queue data before you call startForeground or startBackground.
Input Arguments	s - Session object character string
	Session object created using daq.createSession specified as a string variable. Use the data acquisition session for acquisition and generation operations. Create one session per vendor and use that vendor session to perform all data acquisition operations.
	data - Data object doubles
	Data object specified as an mxn matrix of doubles where m is the number of scans to generate, and n is the number of output channels in the session.
Examples	Queue output data for a single channel
	Create a session, add an analog output channel, and queue some data to output.
	s=daq.createSession('ni'); addAnalogOutputChannel(s,'cDAQ1Mod2', 'aoO', 'Voltage'); queueOutputData(s,linspace(-1, 1, 1000)'); startForeground(s)
	Queue output data for multiple channels
	s=daq.createSession('ni'); addAnalogOutputChannel(s,'cDAQ1Mod2', 0:1, 'Voltage'); data0=linspace(-1, 1, 1000)';

queueOutputData

```
data1=linspace(-2, 2, 1000)';
queueOutputData(s,[data0 data1]);
startBackground(s);
```

See Also daq.createSession | | startForeground | addAnalogOutputChannel | startBackground | startForeground

Purpose	Generate single scan on all output channels
Syntax	outputSingleScan(s,data)
Description	outputSingleScan(s,data) outputs a single scan of data on one or more analog output channels.
Input Arguments	s - Session object character string
	Session object created using daq.createSession specified as a string variable. Use the data acquisition session for acquisition and generation operations. Create one session per vendor and use that vendor session to perform all data acquisition operations.
	data - Data to output doubles
	Data to output, represented as a $1xn$ matrix of doubles where n is the number of output channels in the session.
Examples	Analog Output
Examples	Analog Output Output a single scan on two analog output voltage channels
Examples	
Examples	Output a single scan on two analog output voltage channels
Examples	Output a single scan on two analog output voltage channels Create a session and add two analog output channels. s = daq.createSession('ni');
Examples	<pre>Output a single scan on two analog output voltage channels Create a session and add two analog output channels. s = daq.createSession('ni'); addAnalogOutputChannel(s,'cDAQ1Mod2', 0:1, 'Voltage');</pre>
Examples	<pre>Output a single scan on two analog output voltage channels Create a session and add two analog output channels. s = daq.createSession('ni'); addAnalogOutputChannel(s,'cDAQ1Mod2', 0:1, 'Voltage'); Create an output value and output a single scan for each channel added.</pre>
Examples	<pre>Output a single scan on two analog output voltage channels Create a session and add two analog output channels. s = daq.createSession('ni'); addAnalogOutputChannel(s,'cDAQ1Mod2', 0:1, 'Voltage'); Create an output value and output a single scan for each channel added. outputSingleScan(s,[1.5 4]);</pre>
Examples	<pre>Output a single scan on two analog output voltage channels Create a session and add two analog output channels. s = daq.createSession('ni'); addAnalogOutputChannel(s,'cDAQ1Mod2', 0:1, 'Voltage'); Create an output value and output a single scan for each channel added. outputSingleScan(s,[1.5 4]); Digital Output</pre>

outputSingleScan

	s=daq.createSession('ni'); addDigitalChannel(s,'dev1', 'Port0/Line0:1', 'OutputOnly')
	Output one value each on the two lines:
	<pre>outputSingleScan(s,[0 1])</pre>
See Also	daq.createSession addAnalogOutputChannel addDigitalChannel inputSingleScan

Purpose	Notify when acquired data is available to process
Syntax	lh=addlistener(session,'DataAvailable', <i>callback</i>); lh=addlistener(session,'DataAvailable', @(src, event), expr)
Description	<pre>lh=addlistener(session, 'DataAvailable', callback); creates a listener for the DataAvailable event. When data is available to process, the callback is executed. The callback can be any MATLAB function with the (src, event) signature.</pre>
	<pre>lh=addlistener(session, 'DataAvailable', @(src, event), expr) creates a listener for the DataAvailable event and fires an anonymous callback function. The anonymous function requires the specified input arguments and executes the operation specified in the expression expr. Anonymous functions provide a quick means of creating simple functions without storing your function to a file. For more information see Anonymous Functions.</pre>
	The callback has two required parameters: src and event. src is the session object for the listener and event is a daq.DataAvailableInfo object containing the data associated and timing information. Properties of daq.DataAvailableInfo are:
	Data An mxn matrix of doubles where m is the number of scans acquired, and n is the number of input channels in the session.
	TimeStamps The timestamps relative to TriggerTime in an mx1 array where m is the number of scans acquired.
	TriggerTime A MATLAB serial date time stamp representing the absolute time the acquisition trigger occurs.
	Tip Frequency with which the DataAvaialble event is fired, is controlled by NotifyWhenDataAvailableExceeds

DataAvailable

Examples Create a session, add an analog input channel, and change the duration of the acquisition: s=daq.createSession('ni'); addAnalogInputChannel(s,'cDAQ1Mod1', 'ai0', 'Voltage'); s.DurationInSeconds=5; To add a listener for the DataAvailable event to plot the data, type: lh=addlistener(s,'DataAvailable', @plotData); Create a function that plots the data when the event occurs: function plotData(src,event) plot(event.TimeStamps, event.Data) end Start the acquisition and wait: startBackground(s); wait(s); Delete the listener: delete(lh) See Also addlistener | startBackground | daq.Session NotifyWhenDataAvailableExceeds IsNotifyWhenDataAvailableExceedsAuto Related • "Acquire Data in the Background" **Examples**

Purpose Notify when additional data is required for output on continuous generation **Syntax** lh=addlistener(session,DataRequired,callback); lh=addlistener(session,DataRequired,@(src,event),expr); **Description** lh=addlistener(session,DataRequired,callback); creates a listener for the DataRequired event. When more data is required, the callback is executed. The callback can be any MATLAB function with the (src, event) signature. lh=addlistener(session,DataRequired,@(src,event),expr); creates a listener for the DataRequired event and fires an anonymous function. The anonymous function requires the specified input arguments and executes the operation specified in the expression expr. Anonymous functions provide a quick means of creating simple functions without storing your function to a file. For more information see Anonymous Functions. The callback has two required parameters, src and event. src is the session object for the listener and event is a dag.DataReguiredInfo object. Tips • The callback is typically used to queue more data to the device. • Frequency is controlled by NotifyWhenScansQueuedBelow. **Examples** Add an anonymous listener to a signal generation session Create a session and add two analog output channels.

```
s=daq.createSession('ni');
s.IsContinuous=true
addAnalogOutputChannel(s,'cDAQ1Mod2', 0:1, 'Voltage');
```

Create output data for the two channels :

```
outputData0=(linspace(-1, 1, 1000))';
outputData1=(linspace(-2, 2, 1000))';
```

Queue the output data and add an anonymous listener and generate the signal in the background:

```
queueOutputData(s,[outputData0, outputData1]);
lh=addlistener(s,'DataRequired', ...
@(src,event) src.queueOutputData([outputData0, outputData1]));
```

Generate data and pause for up to 15 seconds:

startBackground(s);
pause(15)

Delete the listener:

delete (lh)

See Also addlistener | startBackground | IsContinuous | daq.Session | NotifyWhenScansQueuedBelow | IsNotifyWhenScansQueuedBelowAuto

Purpose	Notify when device-related errors occur
Syntax	<pre>lh=addlistener(session,'ErrorOccurred', callback); lh=addlistener(session,'ErrorOccurred',@(src,event)expr);</pre>
Description	lh=addlistener(session, 'ErrorOccurred', callback); creates a listener for the ErrorOccurred event. When an error occurs, the call back is executed. The callback can be any MATLAB function with the (src, event) signature.
	<pre>lh=addlistener(session, 'ErrorOccurred',@(src,event)expr); creates a listener for the ErrorOccurred event and fires an anonymous function. The anonymous function requires the specified input arguments and executes the operation specified in the expression expr. Anonymous functions provide a quick means of creating simple functions without storing your function to a file. For more information, see Anonymous Functions.</pre>
	The callback has two required parameters: src and event. src is the session object for the listener and event is a daq.ErrorOccurredInfo object. The daq.ErrorOccurredInfo object contains the Error property, which is the MException associated with the error. You could use the getReport(MException) method to return a formatted message string that uses the same format as errors thrown by internal MATLAB code.
Examples	Create a session, and add an analog input channel:
	s=daq.createSession('ni'); addAnalogInputChannel(s,'cDAQ1Mod1', 'ai0', 'Voltage');
	To get a formatted report of the error, type:
	<pre>lh=addlistener(s,'ErrorOccurred' @(src,event), disp(event.Error.getReport()));</pre>
	Acquire data, wait and delete the listener:
	<pre>startBackground(s); wait(s)</pre>

ErrorOccurred Event

delete(lh)

See Also addlistener | startBackground | daq.Session | MException

Purpose	Add counter input channel
Syntax	addCounterInputChannel(s,deviceID,channelID) ch=addCounterInputChannel(s,deviceID,channelID,measurementType) [ch,idx]=addCounterInputChannel(s,deviceID,channelID,measurementType)
Description	addCounterInputChannel(s,deviceID,channelID) adds a counter channel on the device represented by deviceID with the specified channelID, and channel measurement type, represented by measurementType, to the session s. Measurement types are vendor specific.
	<pre>ch=addCounterInputChannel(s,deviceID,channelID,measurementType) returns the object ch.</pre>
	<pre>[ch,idx]=addCounterInputChannel(s,deviceID,channelID,measurementType) returns the object ch, representing the channel that was added and the index, idx, which is an index into the array of the session object's Channels property.</pre>
	Tip Use daq.createSession to create a session object before you use this method.
Input Arguments	s - Session object character string
	Session object created using daq.createSession specified as a string variable. Use the data acquisition session for acquisition and generation operations. Create one session per vendor and use that vendor session to perform all data acquisition operations.
	deviceID - Device ID character string

Device ID as defined by the device vendor specified as a character string. Obtain the device ID by calling daq.getDevices. The channel specified for this device is created for the session object.

channelID - Channel ID

numeric value

Channel ID, or the physical location of the channel on the device, added to the session, specified as numeric value. You can also add a range of channels. The index for this channel displayed in the session indicates this channels position in the session. If you add a channel with channel ID 1 as the first channel in a session, the session index is 1.

measurementType - Channel measurement type

character string

Channel measurement type specified as a string. measurementType represents a vendor-defined measurement type. Measurement types include:

- 'EdgeCount'
- 'PulseWidth'
- 'Frequency'
- 'Position'

Output Arguments

ch - Counter input channel object

1xn array

Counter input channel that you add, returned as an object containing a 1xn array of vendor specific channel specific information. Use this channel object to access device and channel properties.

idx - Channel index

numeric

Channel index returned as a numeric value. Through the index you can access the array of the session object's Channels property.

D		
Properties	ActiveEdge	Rising or falling edges of EdgeCount signals
	ActivePulse	Active pulse measurement of PulseWidth counter channel
	CountDirection	Specify direction of counter channel
	Device	Channel device information
	EncoderType	Encoding type of counter channel
	ID	ID of channel in session
	InitialCount	Specify initial count point
	MeasurementType	Channel measurement type
	Name	Specify descriptive name for the channel
	Terminal	PFI terminal of counter subsystem
	ZResetCondition	Reset condition for Z-indexing
	ZResetEnable	Enable reset for Z-indexing
	ZResetValue	Reset value for Z-indexing
Examples	Add a counter input Edg	jeCount channel
	s=daq.createSession ('ni addCounterInputChannel(s	') ,'cDAQ1Mod5','ctr0','EdgeCount');
	Add a counter input Fre	quency channel
	Specify output arguments to	represent the channel object and the index.
	s=daq.createSession ('ni [ch,idx]=addCounterInput	') Channel(s,'cDAQ1Mod5',1,'Frequency');

Add multiple counter input channels

	s=daq.createSession ('ni') ch=addCounterInputChannel(s,'cDAQ1Mod5',[0 2 4], 'EdgeCount');
See Also	inputSingleScan startForeground startForeground removeChannel daq.Session
How To	• "Acquire Counter Input Data"

Purpose	Add counter output channel
Syntax	<pre>addCounterOutputChannel(s,deviceID,channelID) ch=addCounterOutputChannel(s,deviceID,channelID,measurementType) [ch,idx]=addCounterOutputChannel(s,deviceID,channelID,</pre>
Description	addCounterOutputChannel(s,deviceID,channelID) adds a counter channel on the device represented by deviceID with the specified channelID, and channel measurement type, represented by measurementType, to the session s. Measurement types are vendor specific.
	<pre>ch=addCounterOutputChannel(s,deviceID,channelID,measurementType) returns the object ch.</pre>
	[ch,idx]=addCounterOutputChannel(s,deviceID,channelID, measurementType) returns the object <i>ch</i> , representing the channel that was added and the index, <i>idx</i> , which is an index into the array of the session object's Channels property.
	Tip Use daq.createSession to create a session object before you use this method.
Input Arguments	s - Session object character string
	Session object created using daq.createSession specified as a string variable. Use the data acquisition session for acquisition and generation operations. Create one session per vendor and use that vendor session to perform all data acquisition operations.
	deviceID - Device ID character string

Device ID as defined by the device vendor specified as a character string. Obtain the device ID by calling daq.getDevices. The channel specified for this device is created for the session object.

channelID - Channel ID

numeric value

Channel ID, or the physical location of the channel on the device, added to the session, specified as numeric value. You can also add a range of channels. The index for this channel displayed in the session indicates this channels position in the session. If you add a channel with channel ID 1 as the first channel in a session, the session index is 1.

measurementType - Channel measurement type

character string

Channel measurement type specified as a string. measurementType represents a vendor-defined measurement type. A valid output measurement type is 'PulseGeneration'.

Output ch - Counter output channel object

Arguments 1xn array

Counter output channel that you add, returned as an object containing a 1xn array of vendor specific channel specific information. Use this channel object to access device and channel properties.

idx - Channel index

numeric

Channel index returned as a numeric value. Through the index you can access the array of the session object's Channels property.

Properties

Device DutyCycle Channel device information Duty cycle of counter output channel

	Frequency	Frequency of generated pulses on counter output channel
	ID	ID of channel in session
	IdleState	Default state of counter output channel
	InitialDelay	Delay until output channel generates pulses
	MeasurementType	Channel measurement type
	Name	Specify descriptive name for the channel
Examples	Add a counter output P	ulseGeneration channel
	s=daq.createSession ('n: addCounterOutputChannel	i') (s,'cDAQ1Mod3','ctr0','PulseGeneration')
	Add two counter output	PulseGeneration channels
	s=daq.createSession ('n: ch=addCounterOutputChann	i') nel(s,'cDAQ1Mod3',0:1,'PulseGeneration')
See Also	startBackground addCou daq.Session	nterInputChannel removeChannel
	. "Comenta Pelaca en a Ca	unter Outrut (lhearnel"

How To ٠ "Generate Pulses on a Counter Output Channel"

resetCounters

Purpose	Reset counter channel to initial count	
Syntax	resetCounters(s)	
Description	resetCounters(s) restarts the current value of counter channels configured in the session object, s to the specified InitialCount property on each channel.	
	Tips	
	• Reset counters only if you are performing on-demand operations using daq.Session.inputSingleScan or daq.Session.outputSingleScan	
	• Create an acquisition session and add a channel before you use this method. See daq.createSession for more information.	
Input Arguments	s - Session object character string	
	Session object created using daq.createSession specified as a string variable. Use the data acquisition session for acquisition and generation operations. Create one session per vendor and use that vendor session to perform all data acquisition operations.	
Examples	Reset Counters	
	Create a session with a counter channel with an 'EdgeCount' measurement type:	
	s=daq.createSession ('ni'); addCounterInputChannel(s,'cDAQ1Mod5', 0, 'EdgeCount');	
	Acquire data.	
	inputSingleScan(s)	

resetCounters

	ans =
	756
	Reset the counter to the default value, 0, and acquire again.
	resetCounters(s)
	inputSingleScan(s)
	ans =
	303
See Also	daq.createSession addCounterInputChannel inputSingleScan daq.Session
Tutorials	• "Counter Channels"
How To	• "Acquire Counter Input Data"
	"Acquire Counter Input Data"

addTriggerConnection

Purpose	Add trigger connection
Syntax	addTriggerConnection(s,source,destination,type) tc=addTriggerConnection(s,source,destination,type) [tc,idx]=addTriggerConnection(s,source,destination,type)
Description	addTriggerConnection(s,source,destination,type) establishes a trigger connection from the specified source device and terminal to the specified destination device and terminal, of the specified connection type.
	tc=addTriggerConnection(s, source, destination, type) establishes a trigger connection from the specified source and terminal to the specified destination device and terminal, of the specified connection type and displays it in the variable tc.
	<pre>[tc,idx]=addTriggerConnection(s,source,destination,type) establishes a trigger connection from the specified source device and terminal to the specified destination device and terminal of the specified connection type and displays the connection in the variable tc and the connection index, idx.</pre>
	Tip Before adding trigger connections, create a session using daq.createSession, and add channels to the session.
Input Arguments	s - Session object character string
	Session object created using daq.createSession specified as a string variable. Use the data acquisition session for acquisition and generation operations. Create one session per vendor and use that vendor session to perform all data acquisition operations.
	source - Source of trigger connection

character string

Source for the trigger connection, specified as a character string. Valid values are:

'external'

When your trigger is based on an external event.

'deviceID/terminal'

When your trigger source is on a specific terminal on a device in your session. For example, 'Dev1/PFI1', for more information on device ID see Device. For more information on terminal see Terminals.

'chassisId/terminal'

When your trigger source is on a specific terminal on a chassis in your session, for example, 'CDAQ1/PFI1'. For more information on terminal see Terminals.

You can have only one trigger source in a session.

destination - Destination of trigger connection

character string

Destination for the trigger connection, specified as a character string. Valid values are:

'external'

When your trigger source is connected to an external device.

'deviceID/terminal'

When your trigger source is connected to another device in your session, for example, 'Dev1/PFI1'. For more information on device ID see Device. For more information on terminal see Terminals.

'chassisId/terminal'

When your trigger source is connected to a chassis in your session, for example, 'cDAQ1/PFI1'. For more information on terminal see Terminals.

example, { 'Dev1/PFI1', 'Dev2/PFI1' }. type - Trigger connection type character string The trigger connection type, specified as a string. StartTrigger is the only connection type available for trigger connections at this time. Output tc - Trigger connection object **Arguments** 1xn array The trigger connection that you add, returned as an object containing a 1xn array trigger connection information. idx - Channel index numeric Channel index returned as a numeric value. Through the index you can access the array of the session object's Channels property. **Properties** Destination Indicates trigger destination terminal ExternalTriggerTimeout Indicate if external trigger timed out IsWaitingForExternalTrigger Indicates if synchronization is waiting for an external trigger Source Indicates trigger source terminal

You can also specify multiple destination devices as an array, for

TerminalsTerminals available on device or
CompactDAQ chassisTriggerConditionSpecify condition that must be
satisfied before trigger executesTriggersPerRunIndicate the number of times the

trigger executes in an operation

TriggersRemaining

Indicates the number of trigger to execute in an operation

TriggerType

Type of trigger executed

Examples Add External Start Trigger Connection

Create a session and add an analog input channel from ${\tt Dev1}$ to the session.

```
s=daq.createSession('ni')
addAnalogInputChannel(s,'Dev1','ai0', 'Voltage');
```

Add a trigger connection from an external device to terminal PFI1 on Dev1 using the 'StartTrigger' connection type:

addTriggerConnection(s,'external','Dev1/PFI1','StartTrigger')

Export Trigger to External Device

To Add trigger connection going to an external destination, create a session and add an analog input channel from Dev1 to the session.

```
s=daq.createSession('ni')
addAnalogInputChannel(s,'Dev1','ai0','Voltage');
```

Add a trigger from terminal PFIO on Dev1 to an external device using the 'StartTrigger' connection type:

addTriggerConnection(s,'Dev1/PFI1','external','StartTrigger')

Save Trigger Connection

Add a trigger connection from terminal PFI1 on Dev1 to terminal PFI0 on Dev2 using the 'StartTrigger' connection type and store it in tc

To display a trigger connection in a variable, create a session and add an analog input channel from Dev1 and Dev2 to the session.

```
s=daq.createSession('ni')
```

	addAnalogInputChannel(s,'Dev1','aiO','Voltage'); addAnalogInputChannel(s,'Dev2','ai1','Voltage');
	Save the trigger connection in tc.
	<pre>tc=addTriggerConnection(s,'Dev1/PFI1','Dev2/PFI0','StartTrigger');</pre>
See Also	<pre>daq.createSession addClockConnection removeConnection</pre>
Related Examples	 "Acquire Voltage Data Using a Digital Trigger" "Multiple-Device Synchronization" "Multiple-Chassis Synchronization"
Concepts	 "Trigger Connections" "Synchronization"

Purpose	Add clock connection
Syntax	addClockConnection(s,source,destination,type) cc=addClockConnection(s,source,destination,type) [cc,idx]=addClockConnection(s,source,destination,type)
Description	addClockConnection(s,source,destination,type) adds a clock connection from the specified source device and terminal to the specified destination device and terminal, of the specified connection type.
	<pre>cc=addClockConnection(s,source,destination,type) adds a clock connection from the specified source device and terminal to the specified destination device and terminal, of the specified connection type and displays it in the variable cc.</pre>
	<pre>[cc,idx]=addClockConnection(s,source,destination,type) adds a clock connection from the specified source device and terminal to the specified destination device and terminal, of the specified connection type and displays the connection in the variable cc and the connection index, idx.</pre>
	Tip Before adding clock connections, create a session using daq.createSession, and add channels to the session.
Input Arguments	s - Session object character string
	Session object created using daq.createSession specified as a string variable. Use the data acquisition session for acquisition and generation operations. Create one session per vendor and use that vendor session to perform all data acquisition operations.
	source - Source of trigger connection character string

Source for the clock connection, specified as a string. Valid values are:

'external'

When your clock is based on an external event.

'deviceID/terminal'

When your clock source is on a specific terminal on a device in your session, for example, 'Dev1/PFI1'. For more information on device ID see Device. For more information on terminal see Terminals.

'chassisId/terminal'

When your clock source is on a specific terminal on a chassis in your session, for example, 'cDAQ1/PFI1'. For more information on terminal see Terminals.

You can have only one clock source in a session.

destination - Destination of trigger connection

character string

Destination for the trigger connection, specified as a character string. Valid values are:

'external'

When your trigger source is connected to an external device.

'deviceID/terminal'

When your trigger source is connected to another device in your session, for example, 'Dev1/PFI1'. For more information on device ID see Device. For more information on terminal see Terminals.

'chassisId/terminal'

When your trigger source is connected to a chassis in your session, for example, 'cDAQ1/PFI1'. For more information on terminal see Terminals.

	You can also specify multiple destination devices as an array, for example, { 'Dev1/PFI1', 'Dev2/PFI1'}.			
	type - Trigger connection typ character string	e		
		pecified as a string. StartTrigger is the for trigger connections at this time.		
Output Arguments	cc - Clock connection object 1xn array			
-	The clock connection that you add, returned as an object containi 1xn array trigger connection information.			
	idx - Channel index numeric			
	Channel index returned as a numeric value. Through the index you can access the array of the session object's Channels property.			
Properties	Destination	Indicates trigger destination terminal		
	Source	Indicates trigger source terminal		
	Terminals	Terminals available on device or CompactDAQ chassis		
Examples	Add External Scan Clock			
	Create a session and add an analog input channel from Dev1 to the			

Create a session and add an analog input channel from Dev1 to the session.

```
s=daq.createSession('ni')
addAnalogInputChannel(s,'Dev1','ai0', 'Voltage');
```

Add a clock connection from an external device to terminal PFI1 on Dev1 using the 'ScanClock' connection type and save the connection settings to a variable:

cc=addClockConnection(s,'external','Dev1/PFI1','ScanClock');

Export Scan Clock to External Device

To add clock connection going to an external destination, create a session and add an analog input channel from Dev1 to the session.

```
s=daq.createSession('ni')
addAnalogInputChannel(s,'Dev1','ai0', 'Voltage');
```

Add a clock from terminal PFIO on Dev1 to an external device using the 'ScanClock' connection type:

```
addClockConnection(s,'Dev1/PFI1','external','ScanClock');
```

See Also daq.createSession | addTriggerConnection | removeConnection

Related Examples

- "Import Scan Clock from External Source"
- "Acquire Clocked Digital Data with Imported Clock"
- "Export Scan Clock to External System"
- "Acquire Clocked Digital Data with Shared Clock"
- "Acquire Digital Data Using Counter Channels"
- "Multiple-Device Synchronization"
- "Multiple-Chassis Synchronization"
- **Concepts** "Clock Connections"
 - "Synchronization"

removeConnection

Purpose	Remove clock or trigger connection
Syntax	<pre>removeConnection(s,idx);</pre>
Description	removeConnection(s,idx); remove the specified clock or trigger with the index, idx, from the ion. The connected device remains in the session, but no longer synchronize with other connected devices in the session.
Input Arguments	s - Session object character string
	Session object created using daq.createSession specified as a string variable. Use the data acquisition ion for acquisition and generation operation Create one session per vendor and use that vendor session to perform all data acquisition operation
	idx
	Index of the connection you want to remove.
Examples	Remove a Clock and Trigger Connection
Examples	Remove a Clock and Trigger Connection Create clock and trigger connection in the session s .
Examples	<pre>Create clock and trigger connection in the session S. s=daq.createSeion('ni'); addAnalogInputChannel(s,'Dev1','ai0','Voltage') addAnalogInputChannel(s,'Dev2','ai0','Voltage') addAnalogInputChannel('Dev3','ai0','Voltage') addTriggerConnection(s,'Dev1/PFI0',{'Dev2/PFI0','Dev3/PFI0'},'StartTrigger'); addClockConnection(s,'Dev1/PFI1',{'Dev2/PFI1','Dev3/PFI1'},'ScanClock');</pre>
Examples	Create clock and trigger connection in the session s. s=daq.createSeion('ni'); addAnalogInputChannel(s,'Dev1','ai0','Voltage') addAnalogInputChannel(s,'Dev2','ai0','Voltage') addAnalogInputChannel('Dev3','ai0','Voltage') addTriggerConnection(s,'Dev1/PFI0',{'Dev2/PFI0','Dev3/PFI0'}','StartTrigger');
Examples	<pre>Create clock and trigger connection in the session S. s=daq.createSeion('ni'); addAnalogInputChannel(s,'Dev1','ai0','Voltage') addAnalogInputChannel(s,'Dev2','ai0','Voltage') addAnalogInputChannel('Dev3','ai0','Voltage') addTriggerConnection(s,'Dev1/PFI0',{'Dev2/PFI0','Dev3/PFI0'},'StartTrigger'); addClockConnection(s,'Dev1/PFI1',{'Dev2/PFI1','Dev3/PFI1'},'ScanClock');</pre>

```
Start Trigger is provided by 'Dev1' at 'PFIO' and will be received by:
        'Dev2' at terminal 'PFIO'
        'Dev3' at terminal 'PFIO'
Scan Clock is provided by 'Dev1' at 'PFI1' and will be received by:
        'Dev2' at terminal 'PFI1'
        'Dev3' PFI0 Dev3/PFI0
        3 ScanClock Dev1/PFI1 Dev3/PFI1
        A ScanClock Dev1/PFI1 Dev3/PFI1
```

Remove the trigger connection with the index 2 from Dev3/PFI0 to Dev1/PFI0:

```
removeConnection(s,2);
```

View updated connection

s.Connections

an=

I

See Also daq.createSession | addClockConnection | addTriggerConnection

Concepts

- "Trigger Connections"
- "Clock Connections"
- "Synchronization"

addDigitalChannel

Purpose	Add digital channel
Syntax	addDigitalChannel(s,deviceID,channelID,measurementType) ch=addDigitalChannel(s,deviceID,channelID,measurementType) [ch,idx]=addDigitalChannel(s,deviceID,channelID,measurementType)
Description	addDigitalChannel(s,deviceID,channelID,measurementType) adds a digital channel to the session, on the device represented by deviceID, with the specified port and single-line combination and the channel measurement type to the session, s.
	ch=addDigitalChannel(s,deviceID,channelID,measurementType) creates and displays the digital channel ch.
	[ch,idx]=addDigitalChannel(s,deviceID,channelID,measurementType) additionally creates and displays idx, which is an index into the array of the session object's Channels property.
	Note To input and output decimal values, use the conversion functions:
	• decimalToBinaryVector

- binaryVectorToDecimal
- hexToBinaryVector
- binaryVectorToHex

Tips

- Create a session using daq.createSession before adding digital channels.
- Change the Direction property of a bidirectional channel before you read or write digital data.

Input Arguments

s - Session object

character string

Session object created using daq.createSession specified as a string variable. Use the data acquisition session for acquisition and generation operations. Create one session per vendor and use that vendor session to perform all data acquisition operations.

deviceID - Device ID

character string

Device ID as defined by the device vendor specified as a character string. Obtain the device ID by calling daq.getDevices. The channel specified for this device is created for the session object.

channelID - Channel ID

numeric value

Channel ID, or the physical location of the channel on the device, added to the session, specified as numeric value. You can also add a range of channels. The index for this channel displayed in the session indicates this channels position in the session. If you add a channel with channel ID 1 as the first channel in a session, the session index is 1.

measurementType - Channel measurement type

character string

Channel measurement type specified as a string. measurementType represents a vendor-defined measurement type. Measurement types include:

- InputOnly
- OutputOnly
- Bidirectional

Outputch - Analog input channel objectArguments1xn array

Analog input channel that you add, returned as an object containing a 1xn array of vendor specific channel specific information. Use this channel object to access device and channel properties.

idx - Channel index

numeric

Channel index returned as a numeric value. Through the index you can access the array of the session object's Channels property.

Properties	Device	Channel device information
	Direction	Specify digital channel direction
	ID	ID of channel in session
	Name	Specify descriptive name for the channel

Examples Add Digital Channels

Discover available digital devices on your system, create a session with digital channels.

Find all installed devices.

d=daq.getDevices

```
d =
Data acquisition devices:
index Vendor Device ID Description
1niDev1National Instruments USB-62552niDev2National Instruments USB-6363
Get detailed subsystem information for NI USB-6255:
d(1)
ans =
ni: National Instruments USB-6255 (Device ID: 'Dev1')
  Analog input subsystem supports:
      7 ranges supported
      Rates from 0.1 to 1250000.0 scans/sec
      80 channels ('ai0' - 'ai79')
      'Voltage' measurement type
   Analog output subsystem supports:
      -5.0 to +5.0 Volts, -10 to +10 Volts ranges
      Rates from 0.1 to 2857142.9 scans/sec
      2 channels ('ao0','ao1')
      'Voltage' measurement type
   Digital subsystem supports:
      24 channels ('port0/line0' - 'port2/line7')
      'InputOnly','OutputOnly','Bidirectional' measurement types
   Counter input subsystem supports:
      Rates from 0.1 to 80000000.0 scans/sec
      2 channels ('ctr0','ctr1')
      'EdgeCount', 'PulseWidth', 'Frequency', 'Position' measurement type
```

```
Counter output subsystem supports:
Rates from 0.1 to 80000000.0 scans/sec
2 channels ('ctr0','ctr1')
'PulseGeneration' measurement type
```

Create a session with input, output, and bidirectional channels using Dev1:

```
s=daq.createSession('ni');
addDigitalChannel(s,'dev1', 'Port0/Line0:1', 'Input0nly');
ch=addDigitalChannel(s,'dev1', 'Port0/Line2:3', 'Output0nly');
[ch,idx]=addDigitalChannel(s,'dev1', 'Port2/Line0:1', 'Bidirectional')
```

```
ans =
```

Data acquisition session using National Instruments hardware: Clocked operations using startForeground and startBackground are disab Only on-demand operations using inputSingleScan and outputSingleScan of Number of channels: 6

index	Туре	Device	Channel	MeasurementType	Range Name
1	dio	Dev1	port0/line0	InputOnly	n/a
2	dio	Dev1	port0/line1	InputOnly	n/a
3	dio	Dev1	port0/line2	OutputOnly	n/a
4	dio	Dev1	port0/line3	OutputOnly	n/a
5	dio	Dev1	port2/line0	Bidirectional (Unknown)	n/a
6	dio	Dev1	port2/line1	<pre>Bidirectional (Unknown)</pre>	n/a

See Also startForeground | startBackground | inputSingleScan | outputSingleScan | daq.createSession | decimalToBinaryVector | binaryVectorToDecimal | hexToBinaryVector | binaryVectorToHex

Related Examples

- "Acquire Non-Clocked Digital Data"
- "Generate Non-Clocked Digital Data"
- "Acquire Clocked Digital Data with Imported Clock"
- "Acquire Digital Data Using Counter Channels"
- "Acquire Clocked Digital Data with Imported Clock"

Concepts • "Digital Subsystem Channels"

decimalToBinaryVector

Purpose	Convert decimal value to binary vector			
Syntax	<pre>decimalToBinaryVector(decimalNumber) decimalToBinaryVector(decimalNumber,numberOfBits) decimalToBinaryVector(decimalNumber,numberOfBits,bitOrder) decimalToBinaryVector(decimalNumber,[],bitOrder)</pre>			
Description	decimalToBinaryVector(decimalNumber) converts a positive decimal number to a binary vector, represented using the minimum number of bits.			
	decimalToBinaryVector(decimalNumber,numberOfBits) converts a decimal number to a binary vector with the specified number of bits.			
	decimalToBinaryVector(decimalNumber,numberOfBits,bitOrder) converts a decimal number to a binary vector with the specified number of bits in the specified bit ordering.			
	decimalToBinaryVector(decimalNumber,[],bitOrder) converts a decimal number to a binary vector with default number of bits in the specified bit ordering.			
Input Arguments	decimalNumber - Number to convert to binary vector numeric			
	The number to convert to a binary vector specified as a positive integer scalar.			
	Data Types single double int8 int16 int32 int64 uint8 uint16 uint32 uint64			
	numberOfBits - Number of bits required to correctly represent the decimal number numeric			

The number of bits required to correctly represent the decimal. This is an optional argument. If you do not specify the number of bits, the number is represented using the minimum number of bits needed. By default minimum number of bits needed to represent the value is specified, unless you specify a value

bitOrder - Bit order for binary vector representation

MSBFirst (default) | LSBFirst

Bit order for the binary vector representation specified as:

- MSBFirst if you want the first element of the output to contain the most significant bit of the decimal number.
- LSBFirst if you want the first element of the output to contain the least significant bit of the decimal number.

Examples Convert a Decimal to a Binary Vector

decimalToBinaryVector(6)

ans =

1 1 0

Convert an Array of Decimals to a Binary Vector Array

decimalToBinaryVector(0:4)

ans	=		
	0	0	0
	0	0	1
	0	1	0
	0	1	1
	1	0	0

Convert a Decimal into a Binary Vector of Specific Bits

```
decimalToBinaryVector(6, 8, 'MSBFirst')
```

ans = 0 0 0 0 0 1 1 0

Convert a Decimal into a Binary Vector with LSB First

```
decimalToBinaryVector(6, [], 'LSBFirst')
ans =
    0 1 1
```

Convert an Array of Decimals into a Binary Vector Array with LSB First

decimalToBinaryVector(0:4, 4, 'LSBFirst')

ans =

0	0	0	0
1	0	0	0
0	1	0	0
1	1	0	0
0	0	1	0

See Also

Functions hexToBinaryVectorbinaryVectorToDecimalbinaryVectorToHex Related

Examples

• "Generate Signals Using Decimal Data Across Multiple Lines"

Purpose	Convert binary vector value to decimal value
Syntax	binaryVectorToDecimal(binaryVector) binaryVectorToDecimal(binaryVector,bitOrder)
Description	binaryVectorToDecimal(binaryVector) converts a binary vector to a decimal.
	binaryVectorToDecimal(binaryVector,bitOrder) converts a binary vector with the specified bit orientation to a decimal .
Input Arguments	binaryVector - Binary vector to convert to decimal binary Vectors
-	Binary vector to convert to a decimal specified as a single binary vector or a row or column-based array of binary vectors.
	bitOrder - Bit order for binary vector representation MSBFirst (default) LSBFirst
	Bit order for the binary vector representation specified as:
	• MSBFirst if you want the first element of the output to contain the most significant bit of the decimal number.
	• LSBFirst if you want the first element of the output to contain the least significant bit of the decimal number.
Examples	Convert Binary Vector to a Decimal Value
	<pre>binaryVectorToDecimal([1 1 0])</pre>
	ans =
	6
	Convert a Binary Vector Array to a Decimal Value

binaryVectorToDecimal([1 0 0 0; 0 1 0 0])

```
ans =
8
4
```

Convert a Binary Vector with LSB First

```
binaryVectorToDecimal([1 0 0 0; 0 1 0 0],'LSBFirst')
ans =
    1
    2
Convert a Binary Vector Array with LSB First
```

```
binaryVectorToDecimal([1 1 0],'LSBFirst')
ans =
6
```

FunctionshexToBinaryVectordecimalToBinaryVectorbinaryVectorToHexRelated
Examples• "Generate Signals Using Decimal Data Across Multiple Lines"

See Also

Purpose	Convert hexadecimal value to binary vector			
Syntax	hexToBinaryVector(hexNumber) hexToBinaryVector(hexNumber,numberOfBits) hexToBinaryVector(hexNumber,numberOfBits,bitOrder)			
Description	hexToBinaryVector(hexNumber) converts hexadecimal numbers to a binary vector.			
	hexToBinaryVector(hexNumber,numberOfBits) converts hexadecimal numbers to a binary vector with the specified number of bits.			
	hexToBinaryVector(hexNumber,numberOfBits,bitOrder) converts hexadecimal numbers to a binary vector with the specified number of bits in the specified bit ordering.			
Input Arguments	hexNumber - Hexadecimal to convert to binary vector hexadecimal			
-	Hexadecimal number to convert to a binary vector specified as a character or an array.			
	numberOfBits - Number of bits required to correctly represent the decimal number numeric			
	This is an optional argument. If you do not specify the number of bits, the number is represented using the minimum number of bits needed.			
	bitOrder - Bit order for binary vector representation MSBFirst (default) LSBFirst			
	Bit order for the binary vector representation specified as:			
	• MSBFirst if you want the first element of the output to contain the most significant bit of the decimal number.			

• LSBFirst if you want the first element of the output to contain the least significant bit of the decimal number.

Examples Convert a hexadecimal to a binary vector

```
hexToBinaryVector('A1')
```

ans=

1 0 1 0 0 0 1

Convert a hexadecimal with a leading 0 to a binary Vector

```
hexToBinaryVector('0xA')
```

ans=

1 0 1 0

Convert an array hexadecimal numbers to a binary vector

```
hexToBinaryVector(['A1'; 'B1'])
```

ans=

1	0	1	0	0	0	0	1
1	0	1	1	0	0	0	1

Convert a hexadecimal number into a binary vector of specific bits

Convert a cell array of hexadecimal numbers into a binary vector of specific bits

			•							
	hex	hexToBinaryVector({'A1';'B1'},8)								
	ans	=								
		1 1	0 0	1 1	0 1	0 0	0 0	0 0	1 1	
	Cor	vert	a hexe	adecin	nal inte	o a biı	nary v	ector v	with LSE	8 first
	hex	ToBina	aryVect	or('A	1', []	, 'LSBF	-irst')		
	ans	=								
		1	0	0	0	0	1	0	1	
See Also										
- .•										

Functions decimalToBinaryVectorbinaryVectorToDecimalbinaryVectorToHex

• "Acquire Digital Data in Hexadecimal Values"

Related Examples

binaryVectorToHex

Purpose	Convert binary vector value to hexadecimal
Syntax	binaryVectorToHex(binaryVector) binaryVectorToHex(binaryVector,bitOrder)
Description	binaryVectorToHex(binaryVector) converts the input binary vector to a hexadecimal.
	binaryVectorToHex(binaryVector,bitOrder) converts the input binary vector using the specified bit orientation.
Input Arguments	binaryVector - Binary vector to convert to hexadecimal binary vector
	The binary vector to convert to hexadecimal specified as a row vector with 0s and 1s. It can also be a column-based array of binary vectors
	bitOrder - Bit order for binary vector representation MSBFirst (default) LSBFirst
	Bit order for the binary vector representation specified as:
	• MSBFirst if you want the first element of the output to contain the most significant bit of the decimal number.
	• LSBFirst if you want the first element of the output to contain the least significant bit of the decimal number.
Examples	Convert a Binary Vector to a Hexadecimal
	binaryVectorToHex([0 0 1 1 1 1 0 1])
	ans =
	3D
	Convert an Array of Binary Vectors to a Hexadecimal
	binaryVectorToHex([1 1 0 0 0 1 0 0 ; 0 0 0 0 1 0 1 0])

ans = 'C4' '0A'

The output is appended with 0s to make all hex values same length strings.

Convert a Binary Vector with LSB First

binaryVectorToHex([0 0 1 1 1 1 0 1], 'LSBFirst') ans = BC

Convert a Binary Vector Array with LSB First

binaryVectorToHex([1 1 0 0 0 1 0 0; 0 0 0 0 1 0 1 0], 'LSBFirst') ans = '23' '50'

The output is appended with 0s to make all hex values same length strings.

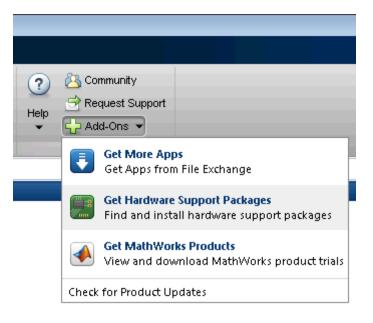
Note The binary vector array is converted to a cell array of hexadecimal numbers. If you input a single binary vector, it is converted to a hexadecimal string.

See Also

Functions hexToBinaryVectorbinaryVectorToDecimaldecimalToBinaryVector Related Examples • "Acquire Digital Data in Hexadecimal Values"

Purpose Find and install support for third-party hardware or software

Syntax supportPackageInstaller


Description The supportPackageInstaller function opens Support Package Installer.

Support Package Installer can install *support packages*, which add support for specific third-party hardware or software to specific MathWorks[®] products.

To see a list of available support packages, run Support Package Installer and advance to the second screen.

You can also start Support Package Installer in one of the following ways:

• On the MATLAB toolstrip, click Add-Ons > Get Hardware Support Packages.

• Double-click a support package installation file (*.mlpkginstall).

See Also targetUpdater | matlabshared.supportpkg.checkForUpdate | matlabshared.supportpkg.getInstalled

Purpose	Reset MATLAB to initial state
Syntax	daq.reset
Description	daq.reset deletes all data acquisition objects from your MATLAB workspace and returns it to a known initial state of having no device objects and no data acquisition MEX-file or DLLs loaded in memory.
See Also	daq.createSession
Concepts	• "Working with the Session-Based Interface"

addAudioInputChannel

Purpose	Add audio input channel				
Syntax	ch=addAudioInputChannel(s,deviceName,channelID) [ch,idx]=addAudioInputChannel(s,deviceName,channelID)				
Description	<pre>ch=addAudioInputChannel(s,deviceName,channelID) creates and displays the object Ch representing a channel added to the session s using the device represented by deviceName, with the specified channelID. The channel is stored in the variable ch. [ch,idx]=addAudioInputChannel(s,deviceName,channelID) additionally creates and displays the object idx, which is an index into the array of the session object's Channels property.</pre>				
	Tips				
	• Use daq.createSession to create a session object before you use this method.				
	• To use analog channels, see addAnalogInputChannel.				

Input Arguments

s - Session object

character string

Session object created using daq.createSession specified as a string variable. Use the data acquisition session for acquisition and generation operations. Create one session per vendor and use that vendor session to perform all data acquisition operations.

deviceName - Device ID

character string

Device ID as defined by the device vendor specified as a character string. Obtain the device ID by calling daq.getDevices. The channel specified for this device is created for the session object.

	channelID - Channel ID numeric value			
	Channel ID, or the physical location of the channel on the device, added to the session, specified as numeric value. You can also add a range of channels. The index for this channel displayed in the session indicates this channels position in the session. If you add a channel with channel ID 1 as the first channel in a session, the session index is 1.			
Output Arguments	ch - Audio input channel object 1xn array			
	Audio input channel that you add, returned as an object containing a 1xn array of vendor specific channel specific information. Use this channel object to access device and channel properties.			
	idx - Channel index numeric			
	Channel index returned as a numeric value. Through the index you access the array of the session object's Channels property.			
Properties	BitsPerSample	Display bits per sample		
	Device	Channel device information		
	ID	ID of channel in session		
	MeasurementType	Channel measurement type		
	Name	Specify descriptive name for the channel		
	Range	Specify channel measurement range		

	StandardSampleRates	Display standard rates of sampling	
	UseStandardSampleRate	Configure session to use standard sample rates	
Examples	Add an audio input channel		
	s=daq.createSession ('directsound') addAudioInputChannel(s,'Audio1',1);		
	Add multiple audio input channels		
	Add five audio input channels and specify output arguments to represent the channel object and the index.		
	s=daq.createSession ('directso [ch, idx]=addAudioInputChannel		
See Also	addAudioOutputChannel daq.cre startBackground removeChannel	•	
How To	"Session-Based Interface"		

Purpose	Add audio output channel					
Syntax	ch=addAudioOutputChannel(s,deviceName,channelID) [ch,idx]=addAudioOutputChannel(s,deviceName,channelID)					
Description	ch=addAudioOutputChannel(s,deviceName,channelID) creates and displays the object Ch representing a channel added to the session s using the device represented by deviceName, with the specified channelID. The channel is stored in the variable ch.					
	[ch,idx]=addAudioOutputChannel(s,deviceName,channelID) additionally creates and displays the object idx, which is an index into the array of the session object's Channels property.					
	Tips					
	• Use daq.createSession to create a session object before you use this method.					
	• To use analog channels, see addAnalogInputChannel.					
Input Arguments	s - Session object character string					
-	Session object created using daq.createSession specified as a string variable. Use the data acquisition session for acquisition and generation operations. Create one session per vendor and use that vendor session to perform all data acquisition operations.					
	deviceName - Device ID character string					
	Device ID as defined by the device vendor specified as a character string. Obtain the device ID by calling daq.getDevices. The channel specified for this device is created for the session object.					

Arguments

channelID - Channel ID

numeric value

Channel ID, or the physical location of the channel on the device, added to the session, specified as numeric value. You can also add a range of channels. The index for this channel displayed in the session indicates this channels position in the session. If you add a channel with channel ID 1 as the first channel in a session, the session index is 1.

Output ch - Audio output channel object

1xn array

Analog input channel that you add, returned as an object containing a 1xn array of vendor specific channel specific information. Use this channel object to access device and channel properties.

idx - Channel index

numeric

Channel index returned as a numeric value. Through the index you can access the array of the session object's Channels property.

Properties	BitsPerSample	Display bits per sample
	Device	Channel device information
	ID	ID of channel in session
	MeasurementType	Channel measurement type
	Name	Specify descriptive name for the channel
	Range	Specify channel measurement range

	StandardSampleRates	Display standard rates of sampling	
	UseStandardSampleRate	Configure session to use standard sample rates	
Examples	Add an audio input channel		
	s=daq.createSession ('directsound') ch=addAudioOutputChannel(s,'Audio1',1);		
	Add multiple audio input channels		
	Add five audio input channels and specify output arguments to represent the channel object and the index.		
	s=daq.createSession ('directso [ch, idx]=addAudioOutputChanne		
See Also	addAudioInputChannel daq.crea startBackground removeChannel	•	
How To	"Session-Based Interface"		

Index

A

ac coupling 2-6 acquiring data single point 5-72 ActiveEdge property Session 1-2 ActivePulse property 1-4 ADCTimingMode property Session 1-6 addchannel function 5-2 addline function 5-8 addmuxchannel function 5-12 AMUX-64T adding channels 5-12 channel indices 5-98 Analog Input (Single Sample) block 3-12 Analog Input block 3-2 analog input object acquisition single point 5-72 Analog Output (Single Sample) block 3-25 Analog Output block 3-17 analog output object output single point 5-112 analogoutput function 5-22 AutoSyncDSA property 1-8

В

BiDirectionalBit property 2-2 binvec2dec function 5-29 BitsPerSample property 2-4 block Analog Input 3-2 Analog Input (Single Sample) 3-12 Analog Output 3-17 Analog Output (Single Sample) 3-25 Digital Input 3-29 Digital Output 3-34 BridgeMode session-based property 1-11 buffer configuration 1-13 BufferingConfig property 1-13 BufferingMode property 1-16

C

Channel property 1-18 ChannelName property 1-20 Channels property Session 1-22 ChannelSkew property 1-25 ChannelSkewMode property 1-26 cleaning up the MATLAB environment daqfind function 5-54 clear function 5-30 ClockSource property 1-29 Connections property Session 1-33 CountDirection property 1-35 Coupling property 2-6

D

daq.createSession function 5-146 daq.getDevices function 5-149 daq.getVendors function 5-152 daqcallback function 5-32 daqfind function 5-34 daqhelp function 5-37 daqhwinfo function 5-40 daqmem function 5-44 daqread function 5-47 daqregister function 5-48 daqreset function 5-50 DataMissedFcn property 1-37 dc coupling 2-6 dec2binvec function 5-51 DefaultChannelValue property 1-39 delete function 5-53 Destination property 1-41 Device property 1-42 Digital Input block 3-29 Digital Output block 3-34 digitalio function 5-56 Direction property 1-43 1-45 disk logging 1-109 disp function 5-60 DMA NI hardware 2-24 DurationInSeconds property 1-47 DutyCycle property 1-48

E

EncoderType property 1-50 EventLog property 1-54 ExcitationCurrent property 1-57 ExcitationSource property 1-59 ExcitationVoltage property 1-61 external clock clock sources 1-29 ExternalClockDriveLine property 2-8 ExternalClockSource property 2-9 ExternalSampleClockDriveLine property 2-10 ExternalSampleClockSource property 2-11 ExternalScanClockDriveLine property 2-13 ExternalScanClockSource property 2-14 ExternalTriggerDriveLine property 2-15 ExternalTriggerTimeout property 1-62 extracting data event information 5-71

native data 1-124

F

FIFO TransferMode 2-24 finding device objects 5-34 flushdata 5-62 flushdata function 5-62 Frequency property 1-64 full duplex BitsPerSample property 2-4 functions addchannel 5-2 addline 5-8 addmuxchannel 5-12 analogoutput 5-22 binvec2dec 5-29 clear 5-30 dag.createSession 5-146 daq.getDevices 5-149 daq.getVendors 5-152 daqcallback 5-32 dagfind 5-34daghelp 5-37 daqhwinfo 5-40 daqmem 5-44dagread 5-47 dagregister 5-48 dagreset 5-50 dec2binvec 5-51 delete 5-53 digitalio 5-56 disp 5-60 flushdata 5-62 get 5-64 getdata 5-67 getsample 5-72 getvalue 5-74 inspect 5-76

ischannel 5-78 isdioline 5-80 islogging 5-82 isrunning 5-84 issending 5-86 isvalid 5-88 length 5-91 load 5-93 makenames 5-96 muxchanidx 5-98 obj2mfile 5-100 peekdata 5-103 propinfo 5-106 putdata 5-109 putsample 5-112 putvalue 5-114 save 5-116 set 5-118 setverify 5-121 showdaqevents 5-124 size 5-127 softscope 5-130 start 5-139 stop 5-141 trigger 5-143 wait 5-144

G

get function 5-64 getdata function 5-67 getsample function 5-72 getvalue function 5-74

Η

hardware initializing 5-50 holding the last output value 2-18 HwChannel property 1-65 HwDigitalTriggerSource property 2-16 HwLine property 1-67

I

ID property 1-69 IdleState property 1-71 Index property 1-72 InitialCount property 1-75 InitialDelay property 1-74 initializing the hardware 5-50 InitialTriggerTime property 1-77 InputOverRangeFcn property 1-79 InputRange property 1-81 InputType property 1-84 inspect function 5-76 interrupts NI hardware 2-24 ischannel function 5-78 **IsContinuous** property 1-86 isdioline function 5-80 IsDone property 1-88 islogging function 5-82 IsLogging property 1-90 IsNotifyWhenDataAvailableExceedsAuto property 1-92 IsNotifyWhenScansQueuedBelowAuto property 1-95 isrunning function 5-84 IsRunning property 1-97 issending function 5-86 IsSimulated property 1-99 isvalid function 5-88 **IsWaitingForExternalTrigger** property 1-101

L

length function 5-91 Line property 1-102 LineName property 1-104 load function 5-93 LogFileName property 1-106 Logging property 1-107 LoggingMode property 1-109 LogToDiskMode property 1-111

M

makenames function 5-96
ManualTriggerHwOn property 1-113
maximum samples queued 1-115
MaxSamplesQueued property 1-115
MeasurementType property 1-119
mux board
 adding channels 5-12
 channel indices 5-98
muxchanidx function 5-98

Ν

Name property 1-121 to 1-122 National Instruments hardware data transfer mechanisms 2-24 native data getdata 5-67 offset 1-124 putdata 5-109 scaling 1-127 NativeOffset property 1-124 NativeScaling property 1-127 NominalBridgeResistance property 1-129 NotifyWhenDataAvailableExceeds property 1-130 NotifyWhenScansQueuedBelow property 1-133 NumberOfScans property 1-135 NumMuxBoards property 2-17

0

obj2mfile function 5-100

OutOfDataMode property 2-18 OutputRange property 1-137 outputting data holding the last value 2-18 single point 5-112

Ρ

Parent property 1-139 peekdata function 5-103 Port property 1-141 PortAddress property 2-20 properties ActiveEdge 1-2 ADCTimingMode 1-6 AutoSyncDSA 1-8 **BiDirectionalBit** 2-2 BitsPerSample 2-4 BridgeMode property 1-11 BufferingConfig 1-13 BufferingMode 1-16 Channel 1-18 ChannelName 1-20 Channels 1-22 ChannelSkew 1-25 ChannelSkewMode 1-26 ClockSource 1-29 Connections 1-33 Coupling 2-6 DataMissedFcn 1-37 DefaultChannelValue 1-39 Destination 1-41 Direction 1-43 1-45 EnhancedAliasRejectionEnable 1-52 EventLog 1-54 ExternalClockDriveLine 2-8 ExternalClockSource 2-9 ExternalSampleClockDriveLine 2-10 ExternalSampleClockSource 2-11

ExternalScanClockDriveLine 2-13 ExternalScanClockSource 2-14 ExternalTriggerDriveLine 2-15 ExternalTriggerTimeout 1-62 HwChannel 1-65 HwDigitalTriggerSource 2-16 HwLine 1-67 Index 1-72 InitialTriggerTime 1-77 InputOverRangeFcn 1-79 InputRange 1-81 InputType 1-84 IsWaitingForExternalTrigger 1-101 Line 1-102 LineName 1-104 LogFileName 1-106 Logging 1-107 LoggingMode 1-109 LogToDiskMode 1-111 ManualTriggerHwOn 1-113 MaxSamplesQueued 1-115 Name 1-121 to 1-122 NativeOffset 1-124 NativeScaling 1-127 NumMuxBoards 2-17 OutOfDataMode 2-18 OutputRange 1-137 Parent 1-139 Port 1-141 PortAddress 2-20 Range 1-145 Rate 1-146 RateLimit 1-148 RepeatOutput 1-149 Running 1-155 RuntimeErrorFcn 1-157 SampleRate 1-159 SamplesAcquired 1-161 SamplesAcquiredFcn 1-162 SamplesAcquiredFcnCount 1-164

SamplesAvailable 1-165 SamplesOutput 1-167 SamplesOutputFcn 1-168 SamplesOutputFcnCount 1-170 SamplesPerTrigger 1-171 ScansAcquired 1-173 ScansOutputByHardware 1-175 ScansQueued 1-177 Sending 1-178 SensorRange 1-181 ShuntLocation 1-183 ShuntResistance 1-185 Source 1-187 StandardSampleRates 2-22 StartFcn 1-190 StopFcn 1-192 Tag 1-194 TerminalConfig 1-197 ThermocoupleType 1-201 Timeout 1-203 TimerFcn 1-205 TimerPeriod 1-207 TransferMode 2-24 TriggerChannel 1-208 TriggerCondition 1-210 1-214 TriggerConditionValue 1-216 TriggerDelay 1-218 TriggerDelayUnits 1-220 TriggerFcn 1-221 TriggerRepeat 1-223 TriggersExecuted 1-225 TriggersPerRun 1-227 TriggersRemaining 1-229 TriggerType 1-230 1-233 Type 1-234 1-236 Units 1-239 session-based 1-237 UnitsRange 1-240 UserData 1-242 Vendor 1-245

property R0 session-based 1-143 RTDConfiguration session-based 1-151 RTDType session-based 1-153 propinfo function 5-106 putdata function 5-109 putsample function 5-112 putvalue function 5-114

Q

queuing data for output maximum number of samples 1-115

R

R0 session-based property 1-143 Range property Session 1-145 Rate property Session 1-146 RateLimit property Session 1-148 RepeatOutput property 1-149 resetting the hardware 5-50 **RTDConfiguration** session-based property 1-151 **RTDType** session-based property 1-153 Running property 1-155 RuntimeErrorFcn property 1-157

S

SampleRate property 1-159 SamplesAcquired property 1-161 SamplesAcquiredFcn property 1-162 SamplesAcquiredFcnCount property 1-164 SamplesAvailable property 1-165 SamplesOutput property 1-167 SamplesOutputFcn property 1-168 SamplesOutputFcnCount property 1-170 SamplesPerTrigger property 1-171 save function 5-116 ScansAcquired property Session 1-173 ScansOutputByHardware property Session 1-175 ScansQueued property Session 1-177 Sending property 1-178 Sensitivity property 1-179 SensorRange property 1-181 sensors range 1-181 Session channels 1-22 1-33 1-145 to 1-146 1-148 1-173 1-175 1-177 1-245 counter channels 1-2 1-6 1-201 Session properties ActivePulse 1-4 CountDirection 1-35 Device 1-42DurationInSeconds 1-47 DutyCycle 1-48 EncoderType 1-50 ExcitationCurrent 1-57 ExcitationSource 1-59 ExcitationVoltage 1-61 Frequency 1-64 ID 1-69 IdleState 1-71 InitialCount 1-75

InitialDelay 1-74 IsContinuous 1-86 IsDone 1-88 IsLogging 1-90 IsNotifyWhenDataAvailableExceedsAuto 1-92 IsNotifyWhenScansQueuedBelowAuto 1-95 IsRunning 1-97 IsSimulated 1-99 MeasurementType 1-119 NominalBridgeResistance 1-129 NotifyWhenDataAvailableExceeds 1-130 NotifyWhenScansQueuedBelow 1-133 NumberOfScans 1-135 Sensitivity 1-179 Terminal 1-196 Terminals 1-199 ZResetCondition 1-246 ZResetEnable 1-248 ZResetValue 1-250 set function 5-118 setverify function 5-121 showdagevents function 5-124 ShuntLocation property 1-183 ShuntResistance property 1-185 Simulink block Analog Input 3-2 Analog Input (Single Sample) 3-12 Analog Output 3-17 3-25 Digital Input 3-29 Digital Output 3-34 single-point acquisition 5-72 output 5-112 size function 5-127 softscope function 5-130 software clock MCC hardware 1-29 sound cards

standard sample rates 2-22 Source property 1-187 StandardSampleRates property 2-22 start function 5-139 StartFcn property 1-190 stop function 5-141 StopFcn property 1-192 synchronizing triggers 1-113

T

Tag property 1-194 Terminal property 1-196 TerminalConfig property 1-197 Terminals property 1-199 ThermocoupleType property Session 1-201 Timeout property 1-203 TimerFcn property 1-205 TimerPeriod property 1-207 TransferMode property 2-24 trigger function 5-143 TriggerChannel property 1-208 TriggerCondition property 1-210 1-214 TriggerConditionValue property 1-216 TriggerDelay property 1-218 TriggerDelayUnits property 1-220 TriggerFcn property 1-221 TriggerRepeat property 1-223 triggers synchronizing for AI and AO 1-113 TriggersExecuted property 1-225 TriggersPerRun property 1-227 TriggersRemaining property 1-229 TriggerType property 1-230 1-233 Type property 1-234 1-236

U

Units session-based property 1-237 Units property 1-239 UnitsRange property 1-240 UserData property 1-242

V

Vendor property

Session 1-245

W

wait function 5-144

Z

ZResetCondition property 1-246 ZResetEnable property 1-248 ZResetValue property 1-250